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REVIEWS OF MODELS FOR ADSORPTION OF SINGLE VAPORS,
MIXTURES OF VAPORS, AND VAPORS AT HIGH HUMIDITIES
ON ACTIVATED CARBON FOR APPLICATIONS INCLUDING

PREDICTING SERVICE LIVES OF ORGANIC VAPOR RESPIRATOR CARTRIDGES.

Abstract

Theories, equations, and models of adsorption and supporting data on adsorption of organic vapors

on activated carbon have been accumulated and analyzed. The target application is the prediction of

service lives of organic vapor air-purifying respirator cartridges. The extensive information on single

vapors at dry conditions needs to be extended to mixtures of vapors and high humidity situations.

First, breakthrough curve models, adsorption equilibrium (isotherm) models, and adsorption rate

(kinetic) models for single vapors were examined. The Dubinin/Radushkevich equation seems to have

the best applicability for predicting adsorption capacities. An expanded database of affinity coefficients

was used to develop improved correlations with molecular parameters. Most of the adsorption rate

models studied did not predict the trend with vapor type. Only the Lodewyckx and Wood/Stampfer

equations were successful in doing this. Of the existing predictive complete breakthrough models

studied, the Wood semi-empirical model was the most successful.

Second, twelve models for adsorption capacities and data for adsorption rates of mixtures of

organic vapor on activated carbon were studied. The Grant-Manes (Polanyi) and Ideal Adsorbed

Solution Theory equations showed the most promise for predicting equilibrium capacities of

components of mixtures. However, it is uncertain how much one vapor affects the adsorption rate of the

other. A generic procedure for calculating complete breakthrough curves for components of mixtures

and including rollover effects was developed.

Third, tabulated, empirical, and correlation models for high relative humidity effects on

breakthrough times were examined. Adsorption capacity models for organic vapor in the presence of

water vapor were compared with data for coadsorption. A Doong-Yang Model gave good predictions



and has some desirable characteristics for equilibrium effects of water vapor. However, the likelihood of

not being at water equilibrium for a respirator cartridge application must be considered.

Finally, recommendations for putting together predictive models from current knowledge and for

developing improved models are presented.
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REVIEWS OF MODELS FOR ADSORPTION OF SINGLE VAPORS,
MIXTURES OF VAPORS, AND VAPORS AT HIGH HUMIDITIES
ON ACTIVATED CARBON FOR APPLICATIONS INCLUDING

PREDICTING SERVICE LIVES OF ORGANIC VAPOR
RESPIRATOR CARTRIDGES

I. Introduction

Worker respiratory protection against airborne vapors of organic compounds is

sometimes provided using air-purifying respirators and associated air-purifying cartridges or

canisters. An essential question in such applications is “How long will the cartridge(s) last (i.e.,

provide acceptable protection)?” Regulatory requirements for establishing change-out schedules

also require objective information on “service lives.” Cartridge service life (“breakthrough

time”) can be measured in laboratory tests under selected conditions of vapor type(s),

concentration(s), air flow, relative humidity, temperature, etc. However, workplace conditions

are so varied and variable that no amount of testing is adequate. Researchers have combined

correlations of experimental data and developments of theoretical equations in efforts to

extrapolate and interpolate available data. The resulting sets of mathematical equations are

sometimes called “models,” since they attempt to describe reality. Applications of such models

as procedures, computer programs, or spreadsheets are also sometimes called “models”.

The objective of this report is to present and evaluate mathematical models relevant to

predicting service lives of air-purifying organic vapor respirator cartridges. These models often

also work for larger air-purifying canisters and air-cleaning filters and may have been developed

using activated carbon beds of any size. The term “cartridge” will usually be used generically to

represent all of these. The scope of this report is limited to cartridges containing granular

activated carbon (charcoal), the most common sorbent for removing organic vapors due to its

low cost and high capacity. We will also only consider organic vapors removed by physical
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adsorption and micropore condensation. The terms “vapor”, “gas”, “chemical”, “compound”,

and “adsorbate” will be used interchangeably in this report, unless otherwise stated. Some

activated carbons are impregnated with chemicals to make them reactive to vapors and gases for

more effective removal. Models for reactive/catalytic air-purifying processes are too specific to

be considered in this report. There are no adequate models for multiple use periods, so we are

currently limited to single, continuous cartridge use models.

The simplest experiment, use application, or model involves a single vapor in dry air.

However, in a workplace there is often a significant amount of water vapor present (i.e., relative

humidity, RH, greater than 50%). There may also be a mixture of vapors (other than water)

present in the air to be cleaned for breathing. Advanced predictive models must be able to take

into account high humidities and mixtures of vapors.

Another technique, computer simulation of the adsorption process with time, has much

potential with increasing personal computer power, but is not yet routinely applied to predicting

cartridge service lives. Therefore, it is not included in the scope of this report.

Four reviews of experimental service life data and models are noteworthy as references

on this topic and as helps in preparing this report. In 1976 Gary Nelson and Nicholas Correia

published a summary and conclusions paper, the eighth in a series entitled “Respirator Cartridge

Efficiency Studies.”[1] This classic set of experimental data and conclusions has been and

continues to be extensively cited and used. In 1977 Dennis Smoot of The Bendix Corporation

published a report, “Development of Improved Respirator Cartridge and Canister Test Methods,”

contracted by NIOSH and NASA.[2] In 1983 Ernest Moyer published “Review of Influential

Factors Affecting the Performance of Organic Vapor Air-Purifying Respirator Cartridges.” [3] In

1988 Martin Werner and Nancy Winters published “A Review of Models Developed to Predict

Gaseous Phase Activated Carbon Adsorption of Organic Compounds.”[4] Since many
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developments in this area have occurred since 1988, it seems timely to build on these reviews

and supplement them with model analyses and recommendations.

II. Models for Adsorption of a Single Organic Vapor

A. Fundamentals

We will first assume a simple experiment where air containing one vapor contaminant is

flowed through a packed bed (e.g., an organic vapor air-purifying respirator cartridge) of

granules of an activated carbon. The variables set in the experiment include: average airflow rate,

airflow pattern (steady or cyclic breathing simulated), vapor type, vapor concentration (usually

constant), carbon type (and physical properties), and bed size (e.g., diameter and depth). If the

carbon is at all effective in removing the vapor, the effluent (air coming out of the bed) at the

beginning of the experiment contains none of the vapor. However, the bed has a finite capacity

for the vapor, so that eventually that capacity will be used up and the vapor will appear in the

effluent. If the rate of vapor removal from flowing air to the carbon granules were infinitely fast,

this “breakthrough” would be immediate and complete only at the “breakthrough time” when

capacity is depleted. However, this is not the case, so some of the vapor appears in the effluent

before equilibrium capacity of the adsorbent for the adsorbate vapor is reached. The amount

breaking through or penetrating the carbon bed increases gradually and then more rapidly until as

much is coming out as is going into the bed. A graphical representation of this process, shown in

Figure 1, is called a breakthrough curve. Breakthrough concentration or fraction (effluent

concentration divided by influent concentration) is plotted against time.

The objective of any service life model is to describe or predict a breakthrough time at

which the effluent reaches a concentration that is no longer acceptable to breathe. So, a service

life model is used to predict a breakthrough curve or a point (concentration and time) on it.
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Figure 1. Components of a vapor breakthrough curve, in this case a slightly
asymmetric one (stoichiometric breakthrough fraction > 0.5).

A breakthrough curve is defined by three characteristics: shape, midpoint, and steepness.

Therefore, a service life model should include all of these. The midpoint is determined by the

capacity of the carbon bed for the vapor at the selected vapor concentration, temperature, and

other conditions. A graph, such as Figure 2, describing the relationship between equilibrium

Figure 2. A sample adsorption isotherm. The horizontal line represents the
maximum capacity when all the micropore volume is filled.
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capacity of a given solid adsorbent and concentration of a given gas adsorbate at a given

temperature is called an “adsorption isotherm.”

The steepness of a breakthrough curve is related to the rate (speed) at which the vapor is

removed from air as it passes through the bed. In the simplest case steepness is described by an

overall mass transfer or adsorption “rate coefficient”, which is larger for larger adsorption rates.

Service life models differ in how they describe one or more of these three breakthrough

curve characteristics. Therefore, the following discussion considers them separately. A complete

model requires selection from among the choices for each of these.

B. Breakthrough Curve Models

Complete breakthrough curves for physical adsorption of vapors on activated carbon

from flowing air usually have what is called an “S” shape (Figure 1). They may be symmetrical

or nearly so. Often they are slightly asymmetrical or skewed, usually steeper at the beginning

than at the end. This is due to heterogeneity of adsorption sites and results in changes in

adsorption rates and/or mechanisms as vapor loading on carbon proceeds. Highly asymmetrical

breakthrough curves result from reactions and/or significant water vapor coadsorption with

possible accompanying heating effects.

Bohart and Adams (1920)[5] first developed an equation describing the ideal,

symmetrical breakthrough curve. It assumed mass balance and adsorption kinetics first order in

vapor concentration and first order in concentration of remaining adsorption sites. With an

exception of very small values of capacity and time, their equation can be rearranged to express

breakthrough time tb (min) for a breakthrough concentration of C as:











C

C-C
ln

Ck

1

Cv60

za
t o

ooL

o
b (1)

where Co (g/cm3) is the entering (challenge) concentration, ao is the volumetric capacity (g/cm3)
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of the sorbent for the vapor, z is the bed depth (cm), and vL is the linear airflow velocity (cm/s).

In this case the rate coefficient k has units of cm3/(g-min). [Note: Here and later in this report

symbols and units are changed from the original references to be consistent throughout this

report.] What is important to the shape is that this equation predicts that breakthrough time is on

a curve centered at the first (capacity) term on the right-hand side of Equation (1) and spread

symmetrically according to the logarithmic term and to an extent determined by the first-order

adsorption rate coefficient, kv. So many others [e.g., 6-8] have also derived this equation that it

may be best to call it according to a generic designation, the Reaction Kinetic equation [8].

Mecklenburg [9] also used mass conservation to derive an equation with a capacity term

minus a term involving an undefined “dead layer” or “critical bed depth”, I:

 Iz
QC

Aa
t

o

o
b  (2)

where Q is the volumetric airflow rate (cm3/min) and A is the cross-section (cm2) of the

adsorbent bed. Klotz [10] combined the Mecklenburg approach with an expression derived by

Gamson et al. [11] for the critical bed depth, It to get a breakthrough time expression:



















C

C
lnScRe

a

1
z

QC

Aa
t o0.670.41

o

o
b (3)

(Definitions of parameters a, Re, and Sc in this equation are not important for the immediate

discussion, but will be given later.) Notice that the logarithmic term is different from that in

Equation (1). Klotz replaced (Co – C) with Co, by assuming that the Co/C is very large, i.e., that

the breakthrough fraction is very small. This unnecessary assumption was copied by others [12-

13] and incorporated into the best-known breakthrough equation [13], often called the Modified

Wheeler Equation for breakthrough time:
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or 







 

C

C
ln

Ck

W

QC

WW
t o

ov

e

o

e
b


(5)

where We is the gravimetric (g/g carbon) capacity, W is the weight (g) of carbon, B is the

packed density (g/cm3) of the carbon bed. The substitution of ln(Co /C) for ln[(Co - C)/C] makes

less than 1% difference in the second (kinetic) term for breakthrough fractions C/ Co less than

0.032. However, it does change the shape of the breakthrough curve from “S”-shaped to “J”-

shaped, approaching infinity instead of a maximum value at long times [Figure 11 in Reference

1]. Not realizing this and using the Modified Wheeler Equation at higher breakthrough fractions

can lead to errors in analyzing data or calculating breakthrough times.

Wood and Moyer [14] have published a review of the Wheeler Equation (Modified and

Reaction Kinetic variants) and comparisons of its applications to organic vapor respirator

cartridge breakthrough data. Applications examined included (1) varying bed weight, (2) varying

residence time, and (3) fitting the breakthrough curve. A common set of breakthrough curves

was analyzed by the three methods. All three approaches produced a common capacity, but

differing rate coefficients. A square-root airflow velocity dependence was found for the rate

coefficients. Guidelines were given for using the Wheeler Equation to design tests and analyze

experimental data.

One other approach to describing the “S”-shaped breakthrough curve is the Theory of

Statistical Moments (TSM). Grubner and Burgess [15] replaced the logarithmic term with a

normal probability distribution and the rate term with a standard deviation. An advantage to

using the TSM is that higher statistical moment terms can be included to describe asymmetrical
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breakthrough curves and calculate breakthrough times for them. A three-term TSM breakthrough

time equation was expressed as:

tb = t50% ( 1 + a  xc + b 2 (xc
2 – 1)) (6)

where t50% is the time for C/Co = 0.5, xc is the probability distribution for any C/Co , and a, b, and

 are constants related to physical parameters of the adsorbent and dynamic adsorption

experiment. A difficulty with using this equation is the necessity of calculating or looking up the

probability distribution parameter in a table. The t50% definition is exact only for symmetrical

breakthrough curves (no third term of Equation (6).

Wood [16] has extended the Reaction Kinetic equation to better describe asymmetric

(skewed) breakthrough curves:







































B

A)-H(t-
exp

P

P-1

A)-G(tB

A-t
exp

A)-G(tB

A-t
exp

C

C

s

so
(7)

where A is the time and Ps is the C/Co ratio for the (stoichiometric, geometric) center of the

breakthrough curve. Two additional terms, G and H, allow this equation to fit by nonlinear least

squares regression analysis for even the most skewed breakthrough curve [16]. Equation (7) has

the advantage of reducing to the Reaction Kinetic equation when G and H are zero; so, it can

also describe the ideal case. A disadvantage is that the parameters G and H cannot be assigned

physical meaning or be related to vapor or carbon properties for predictive purposes.

Yoon and Nelson [17] have also published an equation for describing asymmetric

cartridge breakthrough curves, particularly those resulting from the presence of high humidity.

They assumed that the contaminant saturation capacity, We, is a linear function of time: We =

Wb ( t + Wa ). Their resulting breakthrough curve equation can be rearranged to give a
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breakthrough time expression:

     1
baa

o
tWln-ln(Wk"exp

C

C 1 
  (8)

where A, k”, and Wa are obtained by fitting breakthrough curve data to Equation (8) by nonlinear

least squares regression. The 50% breakthrough time, , can be calculated from these fit

parameters by: A = k” ln (Wa + ). One disadvantage to using Equation (8) for service life

predictions is that some of the fit parameters have no assigned physical meaning. Another

disadvantage is that it does not reduce to the ideal Reaction Kinetic equation the same authors

used previously. [18]

C. Adsorption Capacity Models

Capacity of a packed carbon bed for an organic vapor is the major property that

determines breakthrough time of that vapor. The units of capacity are often moles of vapor per

gram of carbon or grams of vapor per gram of carbon. Organic vapors on activated carbon

containing micropores have a Type I adsorption isotherm [19], increasing rapidly at low vapor

concentrations, less rapidly at moderate concentrations, and leveling off to a maximum at high

concentrations (Figure 2). At vapor concentrations approaching the vapor saturation

concentration at the temperature of concern, the isotherm may turn up again as larger

(macro)pores begin to be filled after the micropores are filled.

Wood and Moyer [20] published a review and comparison of adsorption isotherm

equations used to correlate and predict organic vapor cartridge capacities. Except for the

Freundlich isotherm with ethanol, four isotherm equations described the data sets tested equally

well. Other characteristics of the equations were compared.

The simplest equation describing and predicting equilibrium capacity is the Freundlich

isotherm equation:
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We = a Co
-b (9)

where a and b are empirical coefficients. When logarithms of capacities at breakthrough times

are plotted against logarithms of vapor concentrations (any units), straight lines are often

obtained. Since conservation of mass for very small vapor breakthrough fractions (e.g.,

Equations 1-5) requires that breakthrough time is proportional to capacity divided by

concentration (We/C) , it is expected that log-log plots of breakthrough times vs. vapor

concentrations would also be linear:

1)(b-

o
o

e
b C

Q

Wa

QC

WW
t











 (10)

ob Clog1)(b-
Q

Wa
lntlog 








 (11)

This has also been observed [21-22]. Such log-log plots are simple and useful for interpolations

between experimental breakthrough times, but must be used with care when extrapolating

beyond the data. Disadvantages of using the Freundlich isotherm are that the parameters, a and b,

are empirical (must be determined by experiment for each vapor/carbon combination) and do not

include temperature dependence or other conditions of an application.

Gary Nelson et al. [21-22] experimentally obtained 10% (of challenge concentration)

breakthrough time Freundlich parameters for several compounds. In the first report [21] these

included: acetone (2 cartridge types), hexane (2 cartridge types), vinyl chloride (3 cartridge

types), and 7 other organic compounds. They obtained values of slopes (b) ranging from 0.395 to

0.937 with an average of 0.67 for nine compounds and ranging from 0.348 to 0.436 with an

average of 0.39 for vinyl chloride. This led to a “Rule-of-Thumb” that, “In general, if the

concentration is diminished by a factor of 10, the service life will increase by a factor of 4 or 5.”

In another report [22] they listed Freundlich parameters for 20 compounds and compared
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experimental and calculated breakthrough times. Values of b ranged from 0.108 (methanol) to

1.040 (xylene).

Yoon and Nelson [18] fit capacities calculated from Gary Nelson’s data for 10

compounds to the Freundlich Equation (9) and reported exponents of concentration from 0.092

to 0.652. As expected from Equations (10-11), these values differed from b in Equation (9) by -

1.0.

The Langmuir adsorption isotherm equation [23] is:

oH

oHmax
e

CK1

CKW
W


 (12)

where kH is Henry’s Law coefficient and Wmax is the limit of the capacity at high concentrations.

Vahdat [24] has published an extensive list of Langmuir parameters for 27 organic vapors and 11

types of activated carbons (not all vapors for all carbons). The data used to derive these

parameters were taken from published sources. The Langmuir isotherm equation reduces to

Henry’s Law (capacity is directly proportional to concentration) at low vapor concentrations,

which some find desirable for thermodynamic reasons. It is also easy to apply to mixtures [24].

However, like the Freundlich equation the parameters are empirical and vary in unknown ways

with vapor properties, carbon properties, temperature, etc.

Combinations of the Freundlich and Langmuir isotherm equations have been proposed:

n

n

Cb1

Cba
q


 (13)

The extra parameter (exponent n) provides better (or at least as good) fits of adsorption isotherm

data a either Equations (11) or (12). One example Equation (13) is the Kisarov [25] equation:

 

 nsat

n
sat

p/pb1

p/pba
q


 (14)
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Assuming a fixed micropore volume Wo (cm3/g) and adsorbate in liquid form with normal

density and molar volume Vm (cm3/mol), then a = Wo / Vm (mol/g carbon). The equilibrium

pressure of the bulk (not adsorbed) vapor is psat and of the adsorbed vapor is p. According to

Kisarov [25] the exponent n is a function of temperature T, affinity coefficient  (to be defined

later in this report), and a fit constant k, so that : n = kT/. Begun et al. [26] have suggested

improvement of the Kisarov Equation by replacing the b in the numerator with (1+b). This

Begun/Kisarov isotherm equation did fit tested data better than the D/R at the lowest pressures of

ethanol and isopropanol. In another comparison Rasmuson [27] obtained consistent micropore

volumes (0.475 + 0.015 cm3/g) and carbon structural constants with the D/R fit to toluene and

butanol data, but with the Kisarov equation (0.635 + 0.075 cm3/g). The Begun/Kisarov equation

improved calculated micropore volume consistency (0.545 + 0.035 cm3/g), but discrepancies

among structural and exponential constants remained (6.96 + 2.69 vs. 1.34 + 0.01 for D/R).

Inconsistent parameters among different chemicals make such an equation less useful for

capacity predictions.

Hacskaylo and LeVan [28] developed an adsorption isotherm equation based on analogy

with the well-established Antoine equation for vapor pressures:

T'

)-(1b''
-ln'pln






C

B
A


 (15)

where A’, B’, C’ are Antoine constants obtainable from many sources for many gases and vapors.

Theta is the fraction of saturation capacity,  = We / Wsat and p is the vapor concentration in

pressure units at temperature T. The saturation vapor pressure, psat, can be determined from

temperature and the Antoine constants. Wsat is the capacity at psat . Like the Freundlich and

Langmuir isotherm equations, the Hacskaylo/LeVan has two unknown (fit) parameters, Wsat and

b’. However, these have physical meanings and, therefore, there is hope of them being correlated
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with physical properties of a system. Unfortunately, few values of these parameters have been

published and those for light gases only.

A noteworthy empirical correlation of capacities was published by Nelson and Correia

[1]. They observed that within a “class” of compounds (e.g., monochlorinated hydrocarbons)

capacities measured for 10% breakthrough fraction and 1000 ppm challenge increased linearly

with normal (1 atm) boiling points. They tabulated the boiling point linear fit coefficients for 10

classes of compounds: acetates, alcohols, alkanes, alkyl benzenes, amines, ketones,

monochlorides, dichlorides, trichlorides, and tetrachlorides. An advantage to this approach is that

normal boiling points are readily available for many compounds. Disadvantages include

uncertainty as to whether these correlations apply to other activated carbons and the limited

number of classes correlated.

The Polanyi or Potential Adsorption Theory [29] has been developed on a sound

theoretical basis. It is consistent with the Theory of Volume Filling [30], which recognizes

activated carbon as a system of micropores into which vapors can condense. An adsorption

potential is taken as the reversible isothermal work (change in free energy) of compressing a

vapor into a liquid in the carbon micropores. It is defined in terms of thermodynamic quantities

as:

 = R T ln (psat /p) (16)

where psat is the equilibrium vapor pressure of an adsorbate in the compressed (liquid) state at a

given temperature, T; p is the actual adsorbate pressure (concentration) in the vapor phase; and R

is the universal gas constant. Note that psat /p = Csat /C in concentration units (mass/volume,

e.g., mg/m3, or moles/volume, e.g., moles/L, or volume/total volume, e.g., parts-per-million,

ppm)

The Theory of Volume Filling assumes a maximum adsorption volume, Wo (cm3/gram
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carbon) filled at psat , independent of the vapor adsorbed. The Gurvitsch rule [31] assumes that

the maximum capacity in gravimetric or molar units can be related to Wo by the normal liquid

density dL (g/cm3) or the normal liquid molar volume Vm (cm3/mole) of the vapor, respectively:

Maximum capacity (grams vapor/gram carbon) Wv = Wo dL (17)

Maximum capacity (moles vapor/gram carbon) Wv = Wo / Vm (18)

where Vm = Mw / dL for molecular weight Mw. Below the maximum capacity the actual adsorbed

capacity can likewise be expressed in gravimetric or molar units.

Polanyi [32] added the observation that for a fixed adsorption volume, adsorption

potentials for different vapors are related by constants:

 =  =  = referencereference (19).

The  are called “affinity coefficients” or “similarity coefficients”. Often benzene is taken as the

reference compound andbenzene = 1 is assumed. The relationship of Equation (19) leads to the

idea that plots of adsorption capacity vs. adsorption potential for different vapors produce

different curves that can be coalesced into one “characteristic curve” by applying the appropriate

affinity coefficients. This process characterizes an activated carbon independent of any vapor.

An example of development and use of a characteristic equation is an application by

Grubner and Burgess [15] of the Theory of Statistical Moments to the data of Nelson and Harder

[21, 33]. Midpoints of breakthrough curves were used to obtain adsorption capacities (mL/g) for

five vapors. When these capacities y were plotted vs. x = [ln (psat /p)]/ Vm , with one exception

the data fell on the same line. Therefore, molar volume was used as a surrogate for the affinity

coefficient (more on this later). A polynomial equation of three terms in x was fit to the data to

give:

y = 0.749 – 8.307 x + 14.826 x2 (20)
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Nelson and Carlson [34] applied the Theory of Statistical Moments and this empirical adsorption

isotherm to calculate breakthrough curves of four vapors at four concentrations. They found that

at low concentrations ( < 10 ppm) calculated capacities y, and therefore breakthrough times,

were negative. This is a result of the characteristic equation in polynomial form not being fit to

capacity data at such low concentrations. A different carbon will likely have a different

characteristic curve than Equation (20).

A major contribution by Dubinin et al. [35] was to develop a general mathematical form

for the Polanyi characteristic equation applicable to volume filling of microporous adsorbents,

including activated carbon. The well-known Dubinin-Radushkevich (DR) equation first

published in 1947 can be stated in terms defined above as:

We = WV exp[- B(T/)2 {ln (psat/p)} 2] (21)

where B, the carbon structural constant, in terms of a reference characteristic free energy Eo is:

B = (R / Eo)
2 (22)

Again, the reference is often benzene for which  is taken to be = 1.0. A more general equation is

the Dubinin-Astakhov (DA) [36]:

We = WV exp[- (R T/Eo)
n {ln (psat/p)} n] (23)

The exponent n is a measure of the heterogeneity of the micropore distribution in the carbon;

typical values of for organic vapors on activated carbons range from 1.5 to 3.[37]. For carbons

molecular sieves with narrow pore size distributions, n is at the upper end of this range; for

highly activated carbons it is a the lower. [38] However, the DR (n = 2) equation well describes

the adsorption capacity isotherm for typical industrial activated carbons.[39]

Using the DR equation and a database of  obtained or calculated from many sources,

Wood [40] developed a correlation for  in terms of molar polarization, Pe, and a correlation for
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B in terms of micropore volume, Wo . These correlations were combined to give:

We = Wo dL exp[- b Wo Pe
-1.8 R2 T2 {ln (psat/p)} 2] (24)

Equation (24) was fit to another database, including 1350 capacity data sets from 10 sources for

about 140 different compounds and 15 activated carbons measured by seven techniques over 20

– 200 oC, to get the best fit value of:

b = 3.56 x 10-5 mol2 cal-2 cmo
-3 (cmL

3 / mol) 1.8 (25)

where the subscripts o and L on the units refer to carbon micropore volume and adsorbate liquid

volume, respectively. Equations (24) and (25) allow estimations of vapor adsorption capacities

without experimental data for a reference compound. Micropore volume for the activated carbon

can be measured, obtained from its manufacturer, or estimated. Molar polarizability, liquid

density, and saturation vapor pressure of can be obtained or easily calculated for many

compounds from data in common references. [41, 42] A disadvantage of using Wood’s

correlations is that they represent only averages; actual carbon and vapor interaction properties in

an application may differ from these averages.

D. Affinity Coefficient Models

The Polanyi Potential Theory predicts a characteristic curve upon which adsorption

capacities will coalesce for many different compounds [29, 32]. A coalescence factor for each

chemical is used to adjust the calculated adsorption potential to cause this to happen. This factor,

the ratio of a chemical potential to that of a reference compound (often benzene), came to be

called an “affinity coefficient of the characteristic curve” or a “similarity coefficient” and to be

represented by the Greek letter beta, . Several equation models have been used to correlate and

predict  values.

Polanyi [32] and Berenyi [43] first attempted to correlated  as ratios of the square roots
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of Van der Waals constants. This worked well for gases (except hydrogen) for which these

constants were known. Dubinin and Sawerina [44] assumed that London forces were responsible

for adsorption, The London potential for a molecule near a surface includes polarizability of the

molecule. Therefore, they proposed that affinity coefficients be approximated by ratios of

molecular polarizabilities:

 = Pe / Pe (reference) (26)

if polarizabilities of the surface and ionization potentials are assumed equal. Later, Dubinin and

Timofeyev [45] proposed that polarizabilities could be approximated by molar volumes Vm in

the liquid state, so that:

 = Vm / Vm (reference) (27)

Next, Vaskovsky [46] reported that ratios of molecular parachors gave better correlations with

experimental s than ratios of polarizabilities (the latter are often too high). Parachors  are

obtained from surface tension measurements on pure liquids or can be calculated for organic

compounds from Sudgen’s increments [47, 42]. Therefore, according to Vaskovsky:

 =  /  (reference) (28)

Various authors [48-51, 40] have debated which of Equations (26-28) is the best model

for estimating  for one compound relative to a reference compound. Fits to experimental data

and ranges of applicability (e.g., to non-liquids and inorganic gases) have been discussed. Wood

[40] published an extensive database of experimental and 2 values. Using this database Wood

found 2 to be proportional to Pe
1.8, rather than directly proportional to Pe

2. Therefore,

 = [Pe / Pe (reference)]
0.9 (29)

can be used. This reduced dependence on Pe explains the observation of Dubinin (mentioned

above) that using polarizabilities often give  that are too high.
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Another correlation parameter proposed [52] for  is the critical temperature Tc:

 = Tc / Tc (reference) (30)

This correlation has not been extensively tested, but appears to work better for gases than for

compounds that are liquids at normal temperatures.

E. Adsorption Rates Models

The adsorption rate (or mass transfer) coefficient kv determines (or describes) a third

characteristic of a breakthrough curve, its steepness. It appears as an inverse factor of the

(usually) logarithmic curve shape factor, as in Equation (1). Since the adsorption rate from

flowing air is not infinitely fast (infinitely large kv), the effect of a finite adsorption rate

(coefficient) is to reduce the capacity that the carbon would have at equilibrium (see Equation

(1)). The parameter kv is more properly called a “coefficient” than a “constant”, since it depends

on several parameters of the adsorption system, particularly linear air flow velocity, vL (see

below).

Mecklenburg [9] introduced the concept of a “dead layer,” I, more commonly know as a

“critical bed depth,” for removal of a gas or vapor from air flowing through a packed sorbent

bed. It reduces the adsorbent bed breakthrough time from what would be predicted by

equilibrium adsorption capacity:

 Iz
Cv60

W
t

oL

e
b   (31)

where in SI units tb = breakthrough time (min), vL = linear velocity (cm/s), B = packed bed

density (g/cm3), We = equilibrium capacity (g/g carbon), Co = vapor influent concentration

(g/cm3 air), z = bed depth (cm), and I = critical bed depth (cm). The factor of 60 is to reconcile

units as given.

Gamson et al. [11] derived semi empirical equations for mass transfer correlated with
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Reynolds Number Re = (dp G / ) and Schmidt Number Sc = ( / a Dv). For the case of

external mass transfer (diffusion to the sorbent granule) being rate limiting (slowest step) and for

turbulent flow, the height of a transfer unit (HTU) was expressed as:

67.0
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where in SI units a (cm2/cm3) = the effective surface area of adsorbent granules per unit bed

volume, dp = diameter of spherical granules (cm), G = superficial mass flow velocity (g/cm2-s), 

= viscosity of the air mixture (g/cm-s), a = density of the air mixture (g/cm3), Dv = diffusion

coefficient of the gas in air (cm2/s), and 1.011, 0.41, and 0.67 are empirical coefficients without

units. For cylindrical adsorbent granules with cylinder height hc and diameter dc, the effective dp

can be estimated by

dp = [dc hc + (dc
2/2)]0.5 (33)

Gamson et al. also tabulated maximum values of a for ideal spherical particles from the formula:

a = (6/dp)(1- e). (34)

Fractional void bed volume (or space or external porosity) e measurements yielded average

values of 0.42 for spherical granules 0.23-1.2 cm diameter and 0.38 for cylindrical granules 0.41-

1.9 cm average diameter. The data showed no trends.

Klotz [10] combined the Mecklenburg and Gamson equations (with 1.011 rounded off to

1) and assumed Co/C very large to get an expression for critical bed depth due to external mass

transfer:


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1
I o0.670.41
t
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(35)

Klotz also observed that critical bed depth due to internal (to the adsorbent granules) mass
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transfer (reaction, diffusion, etc.) rate is a complex function of structure and nature of the carbon

and of the gas or vapor. For an assumed first-order transfer rate he generalized it with the

expression:

Ir = kr vL ln(Co/C) (36)

This has a different velocity function and is not a function of granule size, so that theoretically

the limiting rate and mechanism can be identified by dependence of the total critical bed depth, I

= It + Ir , on these parameters. From Equations (1-5):

I = (Q / kv A) ln(Co/C) = (60 vL/ kv) ln(Co/C) (37)

So that the apparent first order adsorption rate coefficient for external mass transfer can be

expressed as:

kv = 60 vL a Re-0.41 Sc-0.67 min-1 (38)

For both external and internal mass transfer rate limiting, Klotz gave a more general equation:

I = g vL
n ln(Co/C) (39)

where g is a constant depending on (mesh) size of the carbon granules and n is a constant

depending on the gas being removed. Then:

kv = (60 / g) vL
1-n (40)

Nelson et al. [1, 21, 33] used Klotz’ breakthrough time equation for external mass

transfer (only), which they referred to as the Mecklenburg equation:
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with a = ac B (cm2 surface area/ cm3 bed volume) (42)

for ac = specific surface area (cm2/g) of the carbon granules. [Note: this is not the same as the

BET “surface area” determined by equilibrium adsorption capacity measurements.] For carbons

in two of the cartridges (Types 1 and 2) tested the fractional bed void volumes (0.42 and 0.38
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cm3/g), average granule diameters (0.165 and 0.117 cm), and specific surface areas (45 and 77

cm2/g) are known [33]. Therefore, we can calculate a = 2.8/dp for Type 1 carbon and a = 3.5/dp

for Type 2. These can be compared with maximum values of a = 3.6/dp for perfect spheres, a

fractional void volume of 0.40 and no effects of surface porosity on a.

Xiang et al. [53] simplified the Mecklenburg/Klotz Equation (41) containing Reynolds

and Schmitt numbers into more familiar parameters to get the equivalent of :

tb = (WeAB/CoQ )[z – m dp
1.41 (Q/1000A)0.41 Mw

0.335 ln (Co/C)] (43)

in symbols and units defined previously. They obtained a best-fit value of 0.45 for m using

experimental data for 23 vapors, two bed depths, three breakthrough fractions, and three

airflows; granule size was not varied. Capacity We was determined using the DA equation,

benzene as a reference, and affinity coefficients calculated from molecular parachors. The

apparent constant m is actually:

m = 3.17 (a dp)
-1 (/a)

0.26 (DvMw)-0.67 (44)

The (a dp)  3.6 is a carbon-specific parameter and a weak function (see above); (/a)
0.26 and

(DvMw)-0.67 are weak functions of the vapor-air mixture. Therefore, it is not surprising that m

appeared to be constant and vapor invariant. [Note: The ln (C/Co) approximation was incorrectly

used at breakthrough ratios as high as 0.5 (see breakthrough curve shape discussion above).] The

rate coefficient corresponding to Equation (43) is:

kv = 1000 (m) -1 dp
-1.41 (Q/1000A)0.59 Mw

-0.335 min-1 (45)

Using this approach Xiang et al. reported mean relative errors for breakthrough times of 4-8 %

for their data and 13-18 % for data of Nelson and Harder [31]. Equation (45) can be expressed as

a function of linear flow velocity vL (cm/s) since Q/(1000A) = 0.06 vL.

The Gamson et al. [11] correlation for external mass transfer has been updated by Wakao
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and Funazkri [54] with additional data and corrected for axial dispersion to give:

It = (1/a)[2.0 + 1.1 (Sc)0.33(Re) 0.60] (46)

The range of the new correlation is Re = 3 to 10,000; however, it must be used with care,

especially at low Re, since the contributions of axial dispersion are not included. Following the

same approach as Xiang et al., we obtain:

kv = (Q /A) [0.56 dp + m’ dp
1.6 (Q/1000A)0.6 Mw

0.165] -1 min-1 (47)

with

m’ = 1.65 (/a)
-0.27 (DvMw)-0.33 (48)

for the external surface area per unit bed volume approximated by a = 3.6/dp.

Wheeler [55] simplified the same correlations used by Klotz, but taken from Hougen and

Watson [56]. Maximum adsorption rate coefficient k was defined as that due to external mass

transfer rate limiting, i.e., much faster surface adsorption and subsequent diffusion. He also

assumed that there is no desorption and that all gas-air mixtures have the same viscosity and

Schmidt number. Wheeler gives the resulting rate coefficient as:

k = 10 vL
0.5 Mm

-0.5 dp
-1.5 PT

-0.5 s-1 (49)

Jonas and Rehrmann [57] further reduced this to:

k = 111.6 vL
0.5 dp

-1.5 min-1 (50)

assuming 1 atm pressure PT and an average molecular weight Mm of 28.8 g/mole for air

containing dilute vapor. Experimental values of adsorption rate coefficients for five organic

vapors in air ranged 20.6-28.0 min-1 with an average of 24.1; this compared well with a

calculated k of 23.5 min-1.

In subsequent work Jonas and Rehrmann [58] reported a different linear flow velocity

(cm/min) dependence observed for benzene:
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kv = 24420.6 / [ 1 + 7.688 exp(-0.005275 vL)] min-1 (51)

This approached a maximum value for linear flow velocity above 15 cm/s for a 12-30 mesh

granular carbon (0.104 cm mean diameter). The general form of Equation (51):

kv = (a + b) / [ 1 + (a/b) exp(-(a + b) c vL)] (52)

was also fit by Rehrmann and Jonas [59] to experimental data for dimethyl methylphosphonate

(DMMP) vapor. In this case the maximum rate coefficient (2600 s-1 or 156000 min-1) was

attained above vL = 50 cm/s or below dp = 0.02 cm. They explained these results and the form of

Equation (52) as being due to changes in the rate controlling (limiting) step with changes in flow

velocity and granule size. In a subsequent study with a 6-10 mesh (0.268-cm diameter granules)

carbon, Jonas et al. [60-61] assumed that internal (pore) diffusion was rate limiting and that the

molecular weight of the air mixture Mm in Equation (49) could be replaced with the molecular

weight of the vapor Mw. Thus, the overall rate adsorption coefficient becomes inversely

proportional to the square root of the molecular weight Mw. If the rate coefficient for a reference

compound is known, then:

kv = kv (reference) [Mw (reference) /Mw ]1/2 (53)

This relationship was tested for seven compounds with molecular weights ranging over (only) a

factor of two with a mean relative deviation of 9%. Wood and Stampfer [62] tested this

relationship and found that it did not hold for a wider range of compounds.

Grubner and Underhill [63] presented mass transfer terms for the Statistical Moments

Theory. Three combinations of rate limiting mechanisms were considered. The simplification

for mass transfer resistance controlled by internal (pore) diffusion resulted in this breakthrough

time expression:

tb = t50 ( 1 + a  xc + b 2 (xc
2 – 1)) (54)
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with  = (R2 u/  Di L)1/2 , where L (= z in cm) is the length of the bed, u (= vL / e in cm/s) is the

average interparticle linear flow velocity,  is the ratio of fractional internal porosity i to

fractional external porosity e of the bed, Di (in cm2/s) is the internal (granule) pore space

diffusion coefficient, and R (= dp / 2 in cm) is the effective sorbent granule radius. The constants

are granule shape factors a = 0.365 and b = 0.0477. For highly microporous carbons internal

porosity i (cm3/ cm3 of carbon bed) can be estimated from the micropore volume (cm3/g)

multiplied by the packed bed density (g/cm3): i = Wo B. For external porosity Gamson [11]

showed (see above discussion) e = 0.40 + 0.02.

Grubner and Burgess [15] applied this SMT approach with only two moments to

breakthrough curve data. They used a relative standard deviation,  t50 = a , to describe the

spreads of the breakthrough curves and showed it to be apparently independent of challenge

vapor concentration (100 – 2000 ppm) and almost proportional to granule size. They assumed i

= e (i.e.,  = 1) and Di = Dv (both actually upper limits) and replaced in the definition of  with

2(1 + ) (for unexplained reasons). Then  became (dp / 4) (vL/ e Dv z)1/2 . Assuming no

breakthrough curve asymmetry (neglecting the third term of Equation (54)) and setting (a ) =

(60 vL/kv z) gives:

kv = 658 (vL/z)1/2 (e Dv)
1/2 dp-1 = 26884 (Q/VB)1/2 (e Dv)

1/2 dp-1 (55)

Wood and Stampfer [62] measured 165 breakthrough curves for 27 hydrocarbons and

fluorocarbons. They also obtained breakthrough curves from the extensive work of Nelson et al.

[1, 21, 33]. Adsorption rate coefficients were extracted from these using a form of Equation (3)

and correlated with molar polarizations Pe to give:

kv = [ ( vL
-1 + 0.027) (I + Sb / Pe) ] -1 min-1 (56)

for I = 0.000825 min-(cm/s) and Sb = 0.063 – 0.0055 ln [(Co – C) /C] and Pe = molar
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polarizability (cm3/mol). The increase of kv with linear flow velocity was almost linear. Most

breakthrough curves were at least slightly asymmetrical, so that rate coefficients calculated at 1%

breakthrough were larger than those at 10%. This is the source of the breakthrough fraction

dependence of the parameter Sb in Equation (56). In these sets of data there were no apparent

effects of challenge concentration or granule size on reciprocal rate coefficients. Combined

uncertainty in calculated reciprocal rate coefficients due to the empirical model and due to

experimental data used was + 50 % (2 standard deviations).

Lodewyckx [64] has derived an empirical equation for kv as a function of linear flow

velocity, average carbon granule diameter, and affinity coefficient:

kv = 60 (0.8) 0.33 vL
0.75 dp-1.5 min-1 (57)

This is based on 55 tests of packed carbon beds for 7 carbons, 12 chemicals, 9 linear airflow

velocities ranging 2 – 33 cm/s and 6 average granule sizes ranging 0.10 – 0.34 cm diameter..

Most values of  were obtained relative to benzene using assumed proportionality with molar

polarizations. Values of kv were calculated from measured 0.1% breakthrough times and

capacities calculated by the Wood [40] correlations. Breakthrough curve asymmetry is not

included. The observed velocity dependence is closer to that observed by Wood and Stampfer

[62] than to the theoretical square root dependence in Equations (49, 50 and 55) and observed

experimentally [14, 65, 73]. Since Lodewyckx assumed  proportional to Pe and referenced to

benzene (Pe = 26.274), Equation (57) can be expressed as:

kv 0.1% = 16.3 Pe
0.33 vL

0.75 dp
–1.5 min-1 (58)

Nelson and Correia [1] summarized adsorption and breakthrough data and developed a

single-term equation for estimating service lives of respirator cartridges at 10% breakthrough.

No adsorption rate coefficient is included; however, by comparing it with the Wheeler and
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Reaction Kinetic breakthrough equations, we conclude that this model inherently assumes that

the rate term is proportional to the capacity term:

QC

WW
k

C

C-C
ln

kC

W

o

e
1

o

vo

e 






 (59)

At 10% breakthrough:
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where the proportionality constant k1 can be defined by using the experimental rate coefficient

for a reference (e.g., benzene).

F. Effects of Temperature on Rate Coefficients

Jonas and Svirbely [66] measured adsorption rate coefficients for carbon tetrachloride

and chloroform at 25-50 oC. Assuming a relation between adsorption rate coefficient and the

adsorption equilibrium constant and assuming a rate limiting mechanism, they calculated

equilibrium heats of adsorption that were 4 % and 2 % higher, respectively, than the heats of

liquefaction. However, simple Arrhenius plots (ln[kv] vs 1/T with T in oK) of their experimental

adsorption rate coefficients give activation energies of adsorption of –6392 cal/mol and –5879

cal/mol, respectively. These are 88% and 85% of the heats of liquefaction, respectively. Heats of

liquefaction are negatives of heats of vaporization, which can be obtained from Arrhenius plots

of vapor pressures of the pure substances. These relatively large negative values of the activation

energies reflect the experimentally observed large decreases in kv with increasing temperature.

A similar calculation of the effect of temperature on the adsorption rate coefficient by

Jonas et al. [67] for DMMP predicted decreasing kv with increasing temperature. However, no

measurements were made for this comparison. A temperature 3/2-power function was assumed

for molecular diffusivity, the DR equation was used for the temperature dependence of
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equilibrium capacity, and the heat of adsorption was assumed equal to the heat of liquefaction.

The resulting calculated kv values, when plotted on an Arrhenius plot, give a slope equivalent to

an activation energy of adsorption which is 92% the heat of liquefaction. The validity and

generality of this approach to calculating effects of temperature need to be further tested with

data.

G. Breakthrough Time Models (Dry Conditions, Single Vapor)

An equation model for predicting breakthrough time of a packed carbon bed or service

life of a carbon-filled cartridge requires these sub-models:

1) An adsorption isotherm equation with at least 2 input parameters

2) A breakthrough curve shape term as a function of breakthrough fraction

3) An adsorption rate coefficient value or equation

In addition, these are desired for better description of actual breakthrough curves:

4) A way to incorporate asymmetry (skew) in the curves

5) Temperature effects for the adsorption isotherm

6) Temperature effects for the adsorption rate coefficient

7) Relative humidity effects on both capacity and adsorption rate

8) Effects of other vapors in mixtures in air

Various authors have selected from (usually) items 1) – 3) to put together breakthrough

time equation models. A distinction can be made between a predictive model and a correlative

model. A predictive model is one that provides all the necessary equations and input parameters

(or sources to obtain needed input parameters). Some parameters, such as temperature or

breathing rate, will need to come from the application. But, ideally, the others, such as molecular

weight of the vapor, can be found in reference handbooks or may be calculated from data in such

resources. The range of applicability of the model will depend on the availability of input
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parameters. For example, if a Freundlich isotherm is specified in the model and the available list

of Freundlich parameters includes only 8 vapors, then the model is limited to only those 8

vapors. A less empirical isotherm model, such as the Dubinin/Radushkevich, allows extension to

other vapors only by knowing the  parameter, which can be calculated from molar polarization,

which can in turn be calculated from molecular weight, diffractive index, and liquid density

obtained from a handbook.

A correlative (or descriptive) model differs in that it requires experiments to be

performed to obtain some of the parameters needed to extrapolate to an application. For example,

if the model doesn’t include a way of calculating an adsorption rate coefficient, it may be

necessary to measure at least one breakthrough curve to get a value for kv. On the other hand, an

actual measurement with the cartridge and/or vapor of concern will likely make the estimate of

service life for the application more reliable.

These two model descriptors actually represent the extremes of a spectrum. All predictive

models are developed from experimental data as well as theoretical concepts. When combined

with a measurement they can be made even more reliable. An equation used for correlating

experimental data can require less experimental data as the input parameters become better

understood.

Table I lists six complete predictive equation models which have been used to estimate

breakthrough times for comparison with experimental data. Table II lists correlative models that

have been proposed and used to extrapolate from data at one or more conditions to breakthrough

times or curves at other conditions. Only two of these [Wood and Yoon/Nelson] include

asymmetry parameters. None of these addresses relative humidity or mixtures.
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Table I. Predictive Models Used to Estimate Breakthrough Times (Service Lives)

Designation Capacity Equation Rate Equation Shape Term Use References
Mecklenburg/
Klotz

Dubinin/Radushkevich
with  calculated from
molar volume, molecular
parachor, or measured

Gamson et al.
[10], external
mass transfer

ln (C/Co) Nelson [21, 33]
Smoot [2]

Modified
Wheeler

Dubinin/Radushkevich
with  calculated from
molar volume or
molecular parachor,

Jona-/Rehrmann
[57], maximum
external mass trans-
fer rate, kv = 111.6
vL

1/2 dp
-3/2 min-1

ln (C/Co) Nelson [1, 68, 69]
Smoot [2, 70]

Nelson
Empirical

Boiling point correlations
plus Freundlich with C2/3.
Parameters tabulated for
10 classes of compounds.

Included in capacity
term, i.e., rate term
is proportional to
capacity term

Included in the
capacity term;
This model is for
10% break-
through only

Nelson [1]
Smoot [2]

Statistical
Moments

Polanyi plot characteristic
equation expressed as a
polynomial

Internal pore
diffusion rate per
Grubner and
Underhill [63]

Normal
distribution
function with
2 moments

Grubner and
Burgess [15],
Nelson and
Carlson [34]

Wood Dubinin/Radushkevich
with  calculated from
molar polarization Pe

0.9

and the carbon structural
constant from micropore
volume by correlation data

kv an empirical
function of molar
polarization, flow
velocity, and break-
through fraction

ln {C/(Co-C)} Wood [71]

Xiang Dubinin/Astakhov with
 calculated from
molecular parachor

Reduced Gamson for
external mass transfer,
fit to only one carbon

ln (C/Co) Xiang et al.
[53]

Table II. Correlative Models Used to Estimate Breakthrough Times (Service Lives)

Designation Capacity Equation Rate Equation Shape Term Use References
Yoon/Nelson Freundlich with

parameters empirically
determined by measuring
breakthrough curves.
Values for 9 vapors from
Gary Nelson data are
reported.

kv and asymmetry
parameters empirically
determined by fitting
equations to break-
through curves.
Capacity and rate fit
parameters are reported
for 121 compounds
from Gary Nelson data.

ln {C/(Co-C)}
with asymmetry
incorporated by
an equation for
capacity change
with time.

Yoon and Nelson
[7, 17, 18,72]

Balieu Langmuir with
parameters empirically
determined by measuring
breakthrough curves at
different concentrations.

kv empirically
determined by fitting
equation to break-
through curves. kv

proportional to vL
1/2

ln {C/(Co-C)} Balieu [73]

Residence
Time

Freundlich with Nelson’s
average power of 0.67.

Breakthrough time
determined experiment-
ally as a function of
bed residence time for
ond size bed is applied
to another.

Cohen and Garrison
[75], Ackley [74]
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H. Review of Single Vapor Breakthrough Time Databases

We examined published and unpublished sources, many discussed previously, for listings

(databases) of breakthrough times of varieties of chemical vapors. It was anticipated that these

could be used for testing service life models. The preliminary criteria for selection were:

 Breakthrough time data given, not merely correlation parameters.

 Complete set of testing (or use) conditions and description of the cartridge(s) or

carbon bed(s) given.

 At least 9 vapors studied.

Desirable characteristics were:

 Concentration varied over a wide range.

 Flow velocity varied over a wide range.

Table III lists the most promising databases found and some of their characteristics.

I. Comparisons of Complete Predictive Models

We have compared five of the service life predictive models listed in Table I. The Xiang

model could not be included, since the DA parameter B given in their paper [53] is incorrect and

does not give reasonable values for capacities. The database selected for comparing

breakthrough times was taken from Table IV of Nelson and Correia [1]. Only data for 50% or

65% relative humidity were used. Included were 32 chemicals, 3 types of organic vapor

cartridges (and their carbons), and vapor concentrations ranging 100-2000 ppm. We used

average carbon weights and densities given in that reference.

The original table of Nelson and Correia included experimental 10% breakthrough times

and those calculated by the Mecklenburg/Klotz, Wheeler/Jonas, and Nelson models described

previously. To this we have added t10% predictions of the Wood and Statistical Moments Theory
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Table III. Candidate Single-Vapor Breakthrough Time Databases for
Evaluations of Service Life Models

Data Resource Ref
.

Number of
Organic
Vapors

Concentration
Varied?

Flow
Velocity
Varied?

Relative
Humidity
Varied?

Other
Comments

MSA (1999) 76 15 Yes,
Usually x 5 or

more range

No Yes 3 cartridges;
75 oF, 64 L/min

Smith (1996) 77 12 Yes,
Usually 1000-

10000 ppm

No Yes 22 – 80% RH;
10 ppm breakthrough times

Smoot (1977) 2 12 No,
1000 ppm

No Yes 0, 50, 80% RH;
1%, 10%, 50%, and 99%

breakthrough times
Xiang (1998) 53 23 No,

2000 ppm
Yes No 2 bed depths;3 Flow

velocities; 5%, 10%, and
50% breakthrough times

Tanaka (1993) 78 46 No,
300 ppm

No No 1.67 % breakthrough times

Freedman(1973) 79 29 No,
1000 ppm

No No 0.5% breakthrough times

Nelson, Carlson,
and Johnson
(1980)

22 20 No,
10 TLVs

No No 10% breakthrough times
and Freundlich correlations

Nelson V (1974) 33 121 No,
1000 ppm

No No 1%, 10%, 99%
breakthrough times and
equilibrium capacities

Nelson VI (1976) 21 9 Yes,
50-2000 ppm

Yes Yes 10% breakthrough times
and equilibrium capacities

Nelson VII (1976) 69 36 Yes,
100-2000 ppm

Yes Yes 10% breakthrough times

Nelson VIII
(1976)

1 32 Yes No Yes 10% breakthrough times

models for dry conditions. The results are listed in Table IV. Figure 3 shows graphical

comparisons of the five models with each other and with experimental breakthrough times.

The Mecklenburg/Klotz and Wheeler/Jonas results were very close to each other for all

data points. This is because they were based on capacity predictions using the same D/R equation

and parameters. The rate terms of Equations (3) and (5) are much smaller than the

corresponding capacity terms, so differences in the former affect the total breakthrough times

very little. This shows the weakness of using total breakthrough time to determine success of rate

coefficient models, as has often been done.
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Figure 3. Comparisons of five predictive single-vapor models with experimental
10% breakthrough times.

Table IV. Predictions of Single-Vapor Service Life Predictive Models.

10% Breakthrough Time (min)
Cartridge

Type
Chemical

Vapor
Flow

(L/min)
Conc
(ppm) Exptl.

Meckl./
Klotz

Wheeler/
Jonas Nelson Wood SMT

1 Benzene 53.3 125 355 440 418 377 418 336

1 Benzene 53.3 500 134 169 161 150 159 123

1 Benzene 53.3 2000 42 59 56 59 55 41

3 Benzene 53.3 1000 101 114 110 127 90 100

1 Toluene 20.6 1000 288 328 322 255 304 240

1 Toluene 36.7 1000 164 180 174 143 167 126

1 Toluene 53.3 1000 114 121 116 99 113 82

1 Methanol 53.3 1000 3.2 8.6 7.9 -0.5 1 -15

1 Isopropanol 53.3 500 126 170 160 78 117 148

1 Isopropanol 53.3 2000 55 75 63 31 51 51

1 Butanol 53.3 1000 141 150 143 120 136 109

1 Pentanol 53.3 1000 130 137 134 139 132 106

3 Vinyl Chloride 40 50 77 99 96 -69 29 -2016

1 Vinyl Chloride 40 250 52 58 57 -24 22 -221

1 Vinyl Chloride 40 1000 23 32 31 -9 14 -10

1 Ethyl Chloride 53.3 1000 11 22 18 26 8 14

1 1-Chlorobutane 53.3 1000 87 90 87 73 76 66

1 Chlorobenzene 53.3 1000 131 132 128 98 130 92

1 Dichloromethane 53.3 500 30 30 28 44 24 18
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1 Dichloromethane 53.3 1000 17 21 20 18 17 25

1 o-Dichlorobenzene 53.3 1000 132 132 130 124 136 108

1 Chloroform 53.3 1000 52 70 67 52 61 57

1 Methyl Chloroform 53.3 250 207 251 242 149 215 194

1 Methyl Chloroform 53.3 2000 56 51 50 37 47 36

1 Trichlorethylene 53.3 1000 83 108 103 73 96 74

1 Carbon Tet 53.3 1000 69 82 79 87 84 67

1 Perchloroethylene 53.3 1000 129 128 123 112 123 88

1 Methyl acetate 53.3 100 146 373 353 248 70 183

1 Methyl acetate 53.3 1000 46 74 82 53 34 56

3 Ethyl acetate 53.3 1000 90 115 111 80 70 97

1 Propyl acetate 53.3 1000 99 110 106 72 93 75

1 Butyl acetate 53.3 1000 97 106 104 87 109 76

3 Acetone 53.3 100 245 504 484 499 134 0

3 Acetone 53.3 500 97 160 154 170 62 85

3 Acetone 53.3 1000 66 94 91 107 42 62

2 2-Butanone 53.3 1000 94 136 132 103 72 96

2 Diisobutyl ketone 53.3 1000 94 97 97 103 90 92

2 Pentane 53.3 1000 71 86 84 68 46 68

3 Hexane 53.3 100 565 646 631 420 447 650

3 Hexane 53.3 500 143 156 152 144 116 164

3 Hexane 53.3 2000 38 44 43 57 35 48

1 Hexane 53.3 1000 68 78 75 67 67 65

2 Cyclohexane 53.3 1000 82 124 122 90 87 89

2 Heptane 53.3 1000 80 106 104 87 85 83

2 Methylamine 53.3 1000 18 49 47 13 0 -120

2 Ethylamine 53.3 1000 50 100 96 57 7 11

1 Diethylamine 53.3 250 92 117 110 179 138 197

1 Diethylamine 53.3 1000 36 53 50 71 57 66

1 Diethylamine 53.3 2000 21 34 32 45 35 37

2 Dipropylamine 53.3 1000 105 141 140 110 96 93

These two models overestimated breakthrough times at the lowest concentrations. We

attribute this to failure of the DR capacity predictions using molar volume ratios for affinity

coefficients . The Nelson model also gave large overestimates for low concentrations in some

cases.

The Statistical Moments Theory application of Grubner and Burgess [15] often gave

values close to experimental ones (i.e., close to the equivalence line of Figure 3); however, it can

give zero or negative capacities and breakthrough times when x = [ln(psat/p)]/Vm > 0.114; i.e., for

low concentrations and/or very volatile chemicals.
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Figure 3 shows the Wood model predictions to be near or lower than experimental

values. For service life predictions underestimates are preferable to overestimates. This model

gave no negative breakthrough time predictions, even with vinyl chloride, as occurred with the

Nelson and SMT models.

J. Comparisons of Adsorption Rate Coefficient Predictions

Nine models for calculating adsorption rate coefficients were discussed in a previous

section and are listed in Table V. In this section we will compare their predictions with rate

coefficients obtained from two sets of experimental data.

The first database is from Table I of Nelson and Harder [33]. It includes 1% and 10%

breakthrough times and equilibrium capacities for 121 chemicals and two brands of cartridges

with differing dimensions and carbons. In order to test rates separately, we will assume the

capacities We (g/g), bed volumes VB (cm3), and bed carbon weights W (g) listed in this table.

Vapor pressures and diffusion coefficients are also listed. Flow rate Q= 53300 cm3/min and

vapor concentrations Co = 1000 ppm = Mw/24.210 g/cm3 at 22 oC are fixed. Using the Reaction

Kinetic form of the Wheeler Equation, the experimental rate coefficient at 10% breakthrough

becomes:











WW

Ct
-

Q

1

/V(9)][ln
)(mink

e

ob

B1-
v10% (61)

Xiang et al. [53] provided the second database we used. It includes 10% and 50%

breakthrough times for three volumetric flow velocities (Q/1000A in L/(min-cm2)), two bed

depths (we will only use z = 2 cm), and 23 chemicals at 2000 ppm. The t50% are taken as the
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stoichiometric centers of the breakthrough curves and as measures of capacity, so that:

 0%10%5

0%5v1-
v10%

t-tz

tV(9)][ln1000
)(mink  (62)

Comparisons of calculated rate coefficients with experimental ones are given in Figures 4

– 14 for the Nelson data and in Figures 15 – 22 for the Xiang data.
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Figure 4. Comparisons of predictions of rate coefficients from the Nelson 10%
breakthrough model with experimental rate coefficients [33].

Figure 5. Comparisons of predictions of rate coefficients from the Wheeler-Jonas
equation with experimental rate coefficients [33].
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Figure 6. Comparisons of predictions of rate coefficients from the Jonas-Rehrmann
equation with experimental rate coefficients [33].

Figure 7. Comparisons of predictions of rate coefficients from the Rehrmann-Jonas
equation with experimental rate coefficients [33].
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Figure 8. Comparisons of predictions of rate coefficients from the Klotz equation
with experimental rate coefficients [33].

Figure 9. Comparisons of predictions of rate coefficients from the Xiang equation
with experimental rate coefficients [33].
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Figure 10. Comparisons of predictions of rate coefficients from the Wakao equation
with experimental rate coefficients [33].

Figure 11. Comparisons of predictions of rate coefficients from the Grubner-
Burgess equation with experimental rate coefficients [33].
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Figure 12. Comparisons of predictions of rate coefficients from the Jonas equation
with experimental rate coefficients [33].

Figure 13. Comparisons of predictions of rate coefficients from the Lodewyckx
equation with experimental rate coefficients [33].
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Figure 14. Comparisons of predictions of rate coefficients from the Wood-Stampfer
equation with experimental rate coefficients [33].

Figure 15. Comparisons of predictions of rate coefficients from the Nelson 10%
breakthrough model with experimental rate coefficients [53].

y = 1.5563x

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000
Experimental Rate Coefficient (min

-1
)

W
o

o
d

/S
ta

m
p

fe
r

R
a

te
C

o
e
ff

ic
ie

n
t

(m
in

-1
)

Type 1

Type 2

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000 4000 6000 8000 10000 12000 14000

Experimental Rate Coefficient (min
-1

)

N
e
ls

o
n

R
a
te

C
o

e
ff

ic
ie

n
t

(m
in

-1
)

3.33 cm/s

6.67 cm/s

13.33 cm/s



42

Figure 16. Comparisons of predictions of rate coefficients from the Klotz equation
with experimental rate coefficients [53].

Figure 17. Comparisons of predictions of rate coefficients from the Xiang equation
with experimental rate coefficients [53].
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Figure 18. Comparisons of predictions of rate coefficients from the Wakao equation
with experimental rate coefficients [53].

Figure 19. Comparisons of predictions of rate coefficients from the Grubner-
Burgess equation with experimental rate coefficients [53].
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Figure 20. Comparisons of predictions of rate coefficients from the Jonas equation
with experimental rate coefficients [53].

Figure 21. Comparisons of predictions of rate coefficients from the Lodewyckx
equation with experimental rate coefficients [53].
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Figure 22. Comparisons of predictions of rate coefficients from the Wood-Stampfer
equation with experimental rate coefficients [53].
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Table V. Summary of How Adsorption Rate Coefficients Calculated from Models
Correlated with Experimental Ones, Flow Rates, and Reported Average Carbon Granule
Sizes.

Model Correlation
with

Experimental
Rate Coefficients

(see graphs)

Vapor
Parameters used

for Rate
Coefficient

Calculations

Correlation
with Flow Rates

(overlap of
Xiang data sets)

Correlation
with Granule

Size
(overlap of

Nelson data sets)
Nelson None None None None
Wheeler/Jonas None None Not Tested None
Jonas-Rehrmann None None Not Tested None
Rehrmann-Jonas None None Not Tested None
Gamson/Klotz Inverse Diffusivity None None
Xiang Inverse Molecular

Weight
None None

Wakao Inverse Molecular
Weight

None None

Grubner-Burgess
SMT

Inverse Diffusivity None None

Jonas Inverse Molecular
Weight

Yes* Yes*

Lodewyckx-
Vansant

Positive  from
Polarizability

Yes None

Wood-Stampfer Positive Polarizability Yes Yes
* Overlaps due only to the absence of velocity and granule size parameters.

The models (Nelson, Wheeler/Jonas, Jonas/Rehrmann, and Rehrmann/Jonas) that do not

include vapor parameters failed completely to correlate kv predictions with experimental ones.

Those (Gamson/Klotz, Xiang, Wakao, Grubner/Burgess SMT, and Jonas) that include molecular

weight or diffusivity as a parameter actually showed inverse correlations of calculated rate

coefficients with experimental ones, i.e. the former decreased as the latter increased. The only

rate coefficient models that showed positive correlations were the Lodewyckx and Wood-

Stampfer models, which include molar polarizability (or its surrogate, affinity coefficient) as a

parameter. Other molecular size parameters (e.g., molar volume or molecular parachor) should

give similar positive correlations.

The Xiang data correlations show whether the models can account for differences in
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airflow rates. Separation of data by flow velocity implies failure of a model for this parameter.

Only the Lodewyckx, Wood-Stampfer, and Jonas models showed overlap of the results for the

three flow velocities. The Jonas model did so only because it does not include velocity as a

parameter.

Likewise, the Nelson data correlations should show whether the models account for

differences in average carbon granule sizes dL. Surprisingly, only the Wood-Stampfer and Jonas

models, which are two that do not include this parameter, showed overlap of results for the two

cartridges and their carbons. In analyzing a larger database Wood and Stampfer [62] observed an

apparent lack of granule size dependence.

On the other hand, granule size effects on adsorption rate coefficients have been clearly

demonstrated [64, 59]. The former [64] showed this with original carbons, while the latter [59]

did so with size fractions obtained by sieving. An alternate explanation is that the carbons in the

two cartridges tested by Nelson and Harder were more alike in effective granule sizes than the

manufacturers’ information indicated. In that case models like the Lodewyckx that include dL as

a parameter would have overcompensated for a reported difference that was not significant.

Figures 13 – 14 and 21 – 22 show best fit lines through the graph origins and their

equations. Slopes of these lines can be considered as average accuracies of the model

predictions, taking 1.0 as ideal. Accuracies for the Wood-Stampfer model (1.56 and 0.79 were

better for both data sets than for the Lodewyckx model (2.36 and 2.09). Lodewyckx’s correlation

was done with kv calculated from 0.1% breakthrough times. For skewed (asymmetric)

breakthrough curves kv is often larger for smaller breakthrough times. For example, for all of the

Nelson data set the average kv1% / kv10% ratio was 1.3; it would be expected to be even greater for

kv0.1% / kv10% . The Wood-Stampfer model includes skew adjustments, so that kv10% could be

calculated and compared directly with experimental ones.
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Precisions of model predictions were compared after “correcting” the calculated values

with the accuracy factors and by calculating standard deviations  of corrected calculated rate

coefficients from experimental ones. The Wood-Stampfer model results were slightly more

precise than the Lodewyckx model ( = 938 vs 1029 min-1) for the Nelson data set, but less

precise ( = 1838 vs 1685 min-1) for the Xiang data set.

K. Comparisons of Adsorption Capacity Model Predictions

Six adsorption isotherm models (listed in Table VI and discussed above) were tested for

their abilities to predict experimentally determined capacities of vapors on activated carbons.

The three experimental data selected were:

 At 2000 ppm benzene, 0.0194 g/g capacity was calculated from the experimental

breakthrough curve midpoint t50% = 74.6 min for a 2-cm-deep bed and a 0.4 L/(min-

cm2) flow rate from the paper of Xiang et al. [53].

 At 100 ppm hexane, 0.242 g/g capacity was reported by Nelson and Harder [21] for a

Type 3 (AO) respirator cartridge.

 At 35.5 ppm ethanol, 0.0255 mL/g, which equals 0.0201 g/g capacity was reported by

Robell et al. [80] for dry conditions at 26 oC and 0.5 atm pressure. This is assumed

equivalent to 17.75 ppm at 1 atm.

Table VI also shows the results. There was no clear “winner” in these comparisons.

 The Kisarov model prediction was closest to the experimental capacity for 2000 ppm

benzene;

 The Gruber-Burgess model prediction was closest (next to one of the

Vahdat/Langmuir) for 100 ppm hexane;

 The Nelson/Freundlich model prediction was closest for 17.75 ppm ethanol.
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For one carbon in Vahdat’s list the prediction was closest to the experimental hexane capacity;

however, three others weren’t. The practical question is, “How does one choose which carbon

(and its Langmuir parameters) to use?

The Grubner-Burgess quadradic equation for capacity gives negative values at low

concentrations (see previous discussion). The Kisarov/Langmuir-Freundlich implementation [25]

has general parameters that are proposed to be used for all chemical; but, Begun et al. [26] list

parameters for only eight chemicals, mostly alcohols, for the modified Begun-

Kisarov/Langmuir-Freundlich equation. Likewise, the Nelson/Freundlich and Vahdat/Langmuir

model implementations have limited lists of parameters to use.

Table VI. Comparisons of Adsorption Capacities from Models with Experimental Ones.

Compound Benzene Hexane Ethanol Comments

Concentration (ppm) 2000 100 35.5 Ethanol data at 0.5 atm converted to 17.75 ppm at 1 atm.

Experimental Value (g/g) 0.194 0.242 0.0201 For benzene, calculated from 74.6 min breakthrough time.

Reference Xiang Nelson VI Robell

Micropore Volume (cm3/g) 0.385 0.454 0.4 Assumed for ethanol

Affinity Coefficient 1.00 1.25 0.60 Experimental average value (Ref. Wood).

Calculated Values:

Nelson/Freundlich 0.40 or 0.37 0.11 or 0.20 0.023 For average or measured exponent, respectively.

Vahdat/Langmuir 0.11 to 0.35 0.05 to 0.24 0.008 to 0.009 For various carbons for which parameters are listed.
Kisarov/Langmuir-

Freundlich 0.19 0.11 0.0095 Used micropore volumes given above.

Begun-Kisarov/ L-F 0.21 0.0029 Parameters not given for hexane.
Wood/Dubinin-
Radushkevich 0.28 0.16 0.0087

Grubner-Burgess/Polanyi 0.37 0.22 -0.112 Negative values obtained at low concentrations.

The Wood/Dubinin-Radushkevich, Grubner-Burgess/Polanyi, and

Kisarov/Langmuir/Freundlich models should be most useful for prediction of capacities for more

chemicals, since they have general parameters that include vapor properties. They predicted

ethanol capacities too low; however, for respirator cartridge or air-cleaning bed service life

applications, too low is better than too high.
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L. Comparisons of Affinity Coefficient Models

Wood [40] published an extensive tabulation of affinity coefficients for gases and vapors

on activated carbons. We have supplemented this with the experimental affinity coefficients

listed in Table VIII. Sources and means of extracting affinity coefficients  from published and

unpublished data are given in a paper [81] recently submitted for publication; therefore, these

details will not be repeated here.

Table VII. Supplemental Values of Affinity Coefficients on Activated Carbons Calculated
from Various Sources.

Compound Activated
Carbon

DA
Exponent

E
kJ/mol

Experimental
 vs.

Reference
Molar

Polarizability

Liquid
Molar

Volume Parachor

Methane Nuxit AC 2.02 3.954 0.71 6.541 73.2
Ethylene Nuxit AC 1.86 4.386 0.79 10.726 101.2
Ethane Nuxit AC 1.89 4.456 0.80 11.225 112.2
Propylene Nuxit AC 1.89 5.547 1.00 15.791 81.884 140.2
Propane* Nuxit AC 1.85 5.568 1.00 15.967 88.092 151.2
Methane BPL 1.55-1.93 3.52-4.12 0.81 6.541 73.2
Ethylene* BPL 1.48-1.75 4.05-5.35 1.00 10.726 101.2
Ethane BPL 1.56-1.79 4.17-5.78 1.05 11.225 112.2
Ethylene Carbon Mol

Sieve
2.68 6.740 0.59

10.726 101.2
Ethane Carbon Mol

Sieve
2.85 6.670 0.58

11.225 112.2
Propylene Carbon Mol

Sieve
2.78 8.410 0.73

15.791 81.884 140.2
Propane Carbon Mol

Sieve
3.02 7.81 0.68

15.967 88.092 151.2
Methanol Carbon Mol

Sieve
1.81 4.651 0.40

8.236 40.485 82.2
Acetone Carbon Mol

Sieve
2.00 9.774 0.85

16.177 73.528 162.0
Hexane Carbon Mol

Sieve
1.62 14.968 1.30

29.898 130.486 271.0
Benzene* Carbon Mol

Sieve
1.78 11.52 1.00

26.274 89.116 206.1
Cyclohexane CAL AC 2 18.73 1.03 27.735 108.105 240.1
Benzene* CAL AC 2 18.23 1.00 26.274 89.116 206.1
Methanol CAL AC 2 8.06 0.44 8.236 40.485 82.2
Ethanol CAL AC 2 10.55 0.58 12.922 58.368 121.2
2-Propanol CAL AC 2 12.57 0.69 17.623 76.512 166.2
2-Butanol CAL AC 2 15.75 0.86 22.177 91.926 205.2
Acetone CAL AC 2 13.21 0.72 16.177 73.528 162.0
Acetonitrile CAL AC 2 9.85 0.54 11.069 52.246 121.9
Sulfur Dioxide CAL AC 2 12.64 0.69 10.090 88.2
Ammonia CAL AC 2 17.28 0.95 5.460 25.609 63.8
1-Hexanol BPL 2 24.55 1.04 31.636 125.590 280.0
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2-Hexanol BPL 2 22.22 0.94 31.321 125.236 280.0
DMMP** BPL 2 17.90 0.76 28.181 108.300
Hexane* BPL 2 23.59 1.00 29.898 130.486 271.0
Heptane BPL 2 27.86 1.18 34.552 146.556 307.2
Nonane BPL 2 32.80 1.39 43.846 178.635 385.2
R-113** BPL 2 18.22 0.77 26.166 116.875 249.6
Dichloromethane BPL 2 14.43 0.61 16.338 64.021 147.6
R-123** BPL 2 18.61 0.79 20.911 103.192 212.4
R-11** BPL 2 15.90 0.67 21.241 91.700 193.4
R-134** BPL 2 13.72 0.58 11.225 146.6
Toluene BPL 2 22.49 0.95 31.054 106.287 245.6
R-22** BPL 2 13.99 0.59 11.521 127.6
R-318 BPL 2 16.28 0.69 18.197 236.4
1-Butanol BPL 2 18.29 0.78 22.154 91.529 205.2
1-Propanol BPL 2 15.55 0.66 17.529 74.798 166.2
Ethanol (UVa) BPL 2 11.21 0.47 12.922 58.368 121.2
Ethanol BPL 2 12.84 0.54 12.922 58.368 121.2
Methanol BPL 2 10.15 0.43 8.236 40.485 82.2
Acetone BPL 2 15.48 0.66 16.177 73.528 162.0
Cyanogen Chloride BPL 2 14.85 0.63 11.326 51.405 120.1
Perfluorocyclo-
hexane

BPL 2
19.27 0.82 27.735 240.1

Ammonia BPL 2 7.28 0.31 5.460 25.609 63.8
Nitrogen Carbon Mol

Sieve
2.6

11.72 0.41 4.390 50.0
Carbon Dioxide Carbon Mol

Sieve
2.3

11.30 0.39 7.344 91.2
Oxygen Carbon Mol

Sieve
2.3

9.21 0.32 3.989 40.0
Hydrogen Carbon Mol

Sieve
2.5

5.44 0.19 2.029 34.2
Neon Carbon Mol

Sieve
3.0

4.06 0.14 0.998
Argon Carbon Mol

Sieve
2.9

10.04 0.35 4.140
Krypton Carbon Mol

Sieve
2.8

11.30 0.39 6.267
Xenon Carbon Mol

Sieve
2.8

14.23 0.49 10.202
Methane Carbon Mol

Sieve
2.8

13.39 0.46 6.541 73.2
Ethylene Carbon Mol

Sieve
3.0

15.48 0.54 10.726 101.2
Ethane Carbon Mol

Sieve
2.9

16.74 0.58 11.225 112.2
Propylene Carbon Mol

Sieve
3.0

21.34 0.74 15.791 81.884 140.2
n-Butane Carbon Mol

Sieve
2.9

23.43 0.81 20.624 100.415 190.2
n-Hexane Carbon Mol

Sieve
2.8

30.55 1.06 29.898 130.486 271.0
Benzene* Carbon Mol

Sieve
3.1

28.87 1.00 26.274 89.116 206.1
Ethyl Acetate Carbon Mol

Sieve
3.1

27.62 0.96 22.267 97.867 216.0



52

p-Xylene Carbon Mol
Sieve

3.3
37.66 1.30 36.005 123.298 282.4

Trichlorethylene Carbon Mol
Sieve

3.2
31.38 1.09 25.369 89.735 212.8

Tetrahydrofuran Carbon Mol
Sieve

3.0
24.27 0.84 19.876 81.095 184.5

Dichloromethane Carbon Mol
Sieve

3.0
20.92 0.72 16.338 64.021 147.6

Cyclohexane Carbon Mol
Sieve

2.8
25.11 0.87 27.735 108.105 240.1

Acetone Carbon Mol
Sieve

2.8
20.92 0.72 16.177 73.528 162.0

Carbon Disulfide Carbon Mol
Sieve

2.6
20.92 0.72 21.494 60.694 147.4

Methanol Carbon Mol
Sieve

2.7
10.88 0.38 8.236 40.485 82.2

Ethanol Carbon Mol
Sieve

2.7
17.16 0.59 12.922 58.368 121.2

1-Butanol Carbon Mol
Sieve

2.6
25.53 0.88 22.154 91.529 205.2

Acetic Acid Carbon Mol
Sieve

3.0
20.92 0.72 13.008 57.234 138.0

Pyridine Carbon Mol
Sieve

3.0
28.45 0.99 24.074 80.558 196.7

Benzene* Shirasagi S 2 1.00 26.274 89.116 206.1
Acetone Shirasagi S 2 0.86 16.177 73.528 162.0
Toluene Shirasagi S 2 1.36 31.054 106.287 245.6
Methanol Shirasagi S 2 0.40 8.236 40.485 82.2
Benzene* HG I-780 2 1.00 26.274 89.116 206.1
Acetone HG I-780 2 0.85 16.177 73.528 162.0
Methanol HG I-780 2 0.36 8.236 40.485 82.2
Chloroform* BPL 2 26.5 1.00 21.462 80.488 184.8
Phosgene BPL 2 24.1 0.91 18.391 72.104 132.4
Cyanogen Chloride BPL 2 16.9 0.64 11.326 51.405 120.1
Hydrogen Cyanide BPL 2 10.8 0.41 6.370 39.311 82.9
Carbon
Tetrachloride*

BPL 2 18.2-25.8 1.00
26.435 96.499 219.7

Acetone BPL 2 15.5-19.4 0.81 16.177 73.528 162.0
Ammonia BPL 2 6.8-10.2 0.38 5.460 25.609 63.8
Hydrogen Sulfide BPL 2 9.24-

13.46
0.50

9.750 82.4
m-Xylene* Coconut BS 2.0 32.2 1.00 35.962 122.854 284.2
MIBK** Coconut BS 2.4 28.0 0.87 30.179 123.456 278.7
Argon Coconut BS 2.4 6.2 0.19 4.140
Ethane* Carbon C 2.03 12.3 1.00 11.225 112.2
Ethylene Carbon C 1.98 11.7 0.95 10.726 101.2
Xenon Carbon C 1.90 10.9 0.89 10.202
Ethane* Carbon D 1.91 11.5 1.00 11.225 112.2
Ethylene Carbon D 1.98 11.9 1.03 10.726 101.2
Xenon Carbon D 1.93 11.0 0.96 10.202
Ethane* MSC-5A 2.45 16.0 1.00 11.225 112.2
Ethylene MSC-5A 2.53 15.6 0.98 10.726 101.2
Xenon MSC-5A 2.30 14.0 0.88 10.202
Ethane* MSC-7A 2.17 14.1 1.00 11.225 112.2
Ethylene MSC-7A 2.16 13.7 0.97 10.726 101.2
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Xenon MSC-7A 2.11 12.7 0.90 10.202
n-Butane* BPL 2 18.3 1.00 20.624 100.415 190.2
Propane BPL 2 14.8 0.81 15.967 88.092 151.2
Ethane BPL 2 12.3 0.67 11.225 112.2
n-Butane* Columbia 2 17.1 1.00 20.624 100.415 190.2
Propane Columbia 2 14.5 0.85 15.967 88.092 151.2
Ethane Columbia 2 12.1 0.71 11.225 112.2
n-Butane* PA 2 23.3 1.00 20.624 100.415 190.2
Propane PA 2 17.0 0.73 15.967 88.092 151.2
Ethane PA 2 12.8 0.55 11.225 112.2
Benzene* Calgon PCB 2 1.00 26.274 89.116 206.1
Methanol Calgon PCB 2 0.50 8.236 40.485 82.2
Benzene* Y-25 2 1.00 26.274 89.116 206.1
Methanol Y-25 2 0.58 8.236 40.485 82.2
Benzene* AC 1.00 26.274 89.116 206.1
Hexane AC 1.08 29.898 130.486 271.0
n-Pentane* AC 1.00 25.278 115.219 231.0
Pyridine AC 0.75 24.074 80.558 196.7
Argon AC 0.26 4.140
Carbon Monoxide AC 0.24 5.279 61.6
Benzene* U-02 2 17.00 1.00 26.274 89.116 206.1
1,2,-Dichloro-
ethane

U-02 2 14.23 0.84
21.316 80.123 188.5

Carbon
Tetrachloride

U-02 2 15.51 1.03
26.435 96.499 219.7

Chlorobenzene U-02 2 18.39 1.082 31.150 101.791 244.3
Benzene* Ajax 976 2 1.00 26.274 89.116 206.1
Propane Ajax 976 2 0.68 15.967 88.092 151.2
Methyl Mercaptan* BPL 2026 1.00 14.919 55.522 121.4
Ethyl Mercaptan BPL 2026 1.24 19.344 74.732 160.4
n-Propyl
Mercaptan

BPL 2026 1.79
23.770 90.548 199.4

Ethyl Ether* BPL No. 2 1.00 22.493 103.839 210.2
Carbon
Tetrachloride

BPL No. 2 0.84
26.435 96.499 219.7

Ethylene Oxide BPL No. 2 0.48 10.963 49.938 144.7
Ethyl Chloride BPL No. 2 0.68 16.158 72.467 149.5
Benzene* BPL 1.00 26.274 89.116 206.1
Carbon Disulfide BPL 0.52 21.494 60.694 147.4

* Reference compound in a set
** DMMP = Dimethyl methylphosphonate; R-113 = 1,1,1-Trichlorotrifluoroethane; R-123 = 2,2-Dichloro-1,1,1-
trifluoroethane; R-11 = Trichlorofluoromethane; R-134 = 1,1,2,2-Tetrafluoroethane; R-22 = Chlorodifluoromethane;
R-318 = Perfluorocyclobutane

The  values in Table VII plus those in the previously published table [40] have been

correlated with molar polarizability, molar volume, molecular parachor, and critical temperature.

We chose power functions  = a Xm of each parameter, X, with coefficients, a, that defined

benzene as the reference, so that  = 1 for the value of the parameter for benzene. When the
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reference chemical for a set of data in Table VII was not benzene, we used the appropriate ratio

of  for comparison with experimental data.

A Sum of the Squares of Deviations analysis resulted in standard deviations for

experimental values vs. correlation values. Selected values of power exponents m were used first

and then varied until the standard deviation was minimized. This data fitting process is

equivalent to the “floating reference” approach used previously [40]. Numbers of data differed

for the three parameters, since some parameter values were not available (e.g, parachors for inert

gases or liquid molar volumes for gases). One questionable  for ammonia (see above)

was excluded from all correlations. Figures 23 – 26 and Table VIII show the results of these

correlations.

Figure 23. Comparison of experimental affinity coefficients with those calculated by
the optimum molar polarizability correlation. Triangles represent data for carbon
molecular sieves. The line is the trend for all the data.

One observation from these results is that affinity coefficients for carbon molecular

sieves (CMS) did not differ significantly from those of more ordinary activated carbons.
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Figure 23, the optimum polarizability correlation, shows CMS results as triangles. There seems

to be no trend distinguishing ordinary activated carbons from molecular sieve carbons for either

small or large molecules.

Figure 24. Comparison of experimental affinity coefficients with those calculated by
the optimum molecular parachor correlation. The line is the trend for all the data.

Figure 25. Comparison of experimental affinity coefficients with those calculated by
the optimum molar volume correlation. The line is the trend for all the data.
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Figure 26. Comparison of experimental affinity coefficients with those calculated by
the optimum critical temperature correlation. The line is the trend for all the data.

Table VIII. Results of Affinity Coefficient Correlations:  = a Xm

Parameter X Power m Coefficient
a

Number
of Data

Standard
Deviation in 

Molar Polarizability 1.00 0.0381 263 0.12
0.90 0.0528 263 0.11
0.75* 0.0862 263 0.10

Molecular Parachor 1.00 0.00485 247 0.09
0.90* 0.00827 247 0.08

Molar Volume 1.00 0.0112 203 0.12
0.90* 0.0176 203 0.11

Critical Temperature 1.00* 0.00178 254 0.24
* Power that produced the best fit to data

From Table VIII we see that molecular parachor was the parameter that produced the best

 correlations. Since liquid surface tensions and/or liquid densities are unknown or cannot be

measured for many chemicals, molecular parachor is usually calculated from sums of Sugden

atomic and structural constants. We have used parachors tabulated in American Chemical

Society references or calculated from the Sugden tables in them [42]. However, there are no

Sugden constants for less common atoms such as phosphorus and inert gases.
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The work of Reucroft [48] has suggested that using parachor to calculate  might not

properly account for dipole moments in polar molecules. The analyses of our more extensive

database do not indicate any worse correlations of polar compounds than nonpolar ones. Figure

27 shows comparisons of experimental  for the most polar compounds, alcohols, with those

calculated using the best correlations (Table IX) for the complete dataset. Within experimental

scatter there are no trends or significant deviations from equivalence using parachor,

polarizability, or molar volume parameters.

Figure 27. Comparisons of experimental and calculated affinity coefficients for
alcohols.
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III. Models for Adsorption of Mixtures of Organic Vapors

A. Fundamentals

The goal of a theoretical model should be to describe and predict actual physical

situations using mathematical equations (models). In the case of service life (breakthrough time)

models this means one must be able to predict the major contributors to breakthrough curves:

a) adsorption capacities and b) adsorption rates. Often the first step in developing a theoretical

and practical model is to start with ideal (simple and thermodynamically consistent) cases and

add additional parameters (complications) only as required. For the adsorption of mixtures of

vapors in air onto an adsorbent surface the following ideal cases can be defined :

1) Ideal gas mixture: All gas (or vapor) components i
and their mixtures follow the Ideal Gas Law,

pi V = ni R T and pT V = nT R T (63)

and the Ideal Gas Mixture Law
(Dalton’s Law):

pi = yi pT and pT =  pi (64)

2) Ideal concentrated solution: The adsorbed
mixture of vapors on the adsorbent follow
Raoult’s Law:

pi = xi pT and pT =  pi (65)
where the components of a carrier gas (usually
air) are ignored.

3) Ideal pore-filling solution: The volumes Wi

occupied by components are additive (no volume
change upon mixing) and exist at the same densities
as if not adsorbed (e.g., normal bulk liquid densities,
dL i. in g/cm3).

4) Ideal porous adsorbent: It is thermodynamically
inert and has a fixed maximum adsorption volume
(space or micropore volume Wo in cm3/g) that may be
filled to the extent Vads

Combining 3) and 4) gives the Gurvitsch [31] rule:
Wo = (Vads i)max (66)

pi = partial pressure exerted
by ni moles of vapor I

pT = total pressure of nt

total moles of a gas/vapor
mixture

R = ideal gas constant, e.g.,
8.31451 j/mol-deg

T = absolute temperature
(oK)

V = total volume of
gas/vapor mixture

yi = mole fraction of
chemical i in the gas phase

xi = mole fraction of
chemical i in the adsorbed
phase

Vads = total occupied
adsorption volume (or
space) in cm3/g

Mw = molecular weight in
g/mol
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The number of moles of each vapor adsorbed is
given by:

n i = Wi dL i / M w i (67)

with adsorbate mole fractions:
x i = n i /  n i (68)

and gas phase mole fractions:
y i = p i /  p i (69)

B. Models for Adsorption Capacities of Mixture Components

1. Molar Proportionality Model. The simplest model for predicting

adsorption capacities of mixtures is the Molar Proportionality Model (or Method). It incorporates

these ideal cases (especially xi = yi) and the assumption that the amounts adsorbed from a vapor

mixture are proportional by adsorbate (and equivalent vapor) mole fractions to the amounts Wi
o

that would have been adsorbed from a pure vapor at the same partial vapor pressure (or

concentration). In other words, the different components do not interact except to “deny”

adsorption to one another. This assumes a limited number of moles (adsorption sites or surface

area) can be covered (the Langmuir isotherm assumption). For a binary vapor mixture (two

vapors excluding air components) the total W12 and individual amounts Wi adsorbed (in any

consistent units) can be expressed as:

W12 = x1 W1
o + x2 W2

o = y1 W1
o + y2 W2

o (70)

Wi = yi Wi
o (71)

This can easily be extended to any number of vapor components. Known component vapor

pressures (concentrations) are used to calculate mole fractions.

Any single-vapor isotherm (see discussion in a previous section) or measurements can be

used to calculate the pure vapor adsorption capacities Wi
o. For example, Jonas et al. [82] used

the Dubinin/Rasdushkevich isotherm with carbon tetrachloride as the reference compound to

predict individual and total adsorption volumes (and corresponding gravimetric capacities in g/g
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carbon) from gas phase mole fractions by the Molar Proportionality Method. They found good

agreement (-10 to +20% individual deviations) with experimental kinetic capacities obtained

from slopes of plots of 1% breakthrough times vs. carbon bed weights. Figure 28 shows a

comparison (least squares trend line and standard deviation of 0.02 g/g) of calculated and

experimental capacities for binary mixtures of benzene, chloroform, and carbon tetrachloride.

Figure 28. Comparison of capacities calculated by the Molar Proportionality Model
with experimental ones for binary mixtures including carbon tetrachloride,
benzene, or chloroform [82].

Robbins and Breysse [83] similarly measured single-vapor gravimetric adsorption

capacities for p-xylene and pyrrole from breakthrough curves and used them with the Molar

Proportionality Method to predict capacities and breakthrough times in the presence of other

vapors (o-dichlorobenzene, p-dichlorobenzene, p-fluorotoluene, and toluene). Average capacity

deviations from experimental values ranged from 0 to –35% for p-xylene and from –13 to +32%

for pyrrole. Figure 29 shows precision of the predictions similar to those of Jonas et al. [82], but

an average 20% underestimate for p-xylene capacities.
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Figure 29. Comparisons of capacities calculated by the Molar Proportionality Model
with experimental ones for binary mixtures including p-xylene or pyrrole with four
other vapors [83].

Reucroft et al. [84] applied the Molar Proportionality Method with three other models

(Dubinin/Polanyi, John’s, and IAST—see discussions below) to predicting adsorption capacities

from measured pure vapor adsorption capacities. They measured total equilibrium capacities of

mixtures of chloroform/methylene chloride, n-hexane/methylene chloride, benzene/n-hexane,

and chloroform/carbon tetrachloride. Figure 30 shows that only the hexane/methylene chloride

total weights were overestimated.

Figure 30. Comparisons of total binary vapor capacities calculated by the Molar
Proportionality Model with experimental ones for four binary mixtures [84].
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Individual kinetic capacities from breakthrough time vs bed weight plots are compared

with predictions in Figure 31. Chloroform capacities in mixtures with methylene chloride were

grossly underestimated.

Figure 31. Comparisons of capacities calculated by the Molar Proportionality Model
with kinetic capacities measured for four vapors in binary mixtures [84].

Cohen et al. [85] applied molar proportionality to predict some of their data for carbon

tetrachloride/n-hexane and carbon tetrachloride/pyridine equimolar (1000 ppm each) mixtures.

Deviations of predicted adsorption capacities from kinetic We values obtained from plots of 10%

breakthrough times vs. bed residence times were –39% for carbon tetrachloride and +3% for n-

hexane in one mixture and –12% for carbon tetrachloride and –39% for pyridine in another.

2. Volume Exclusion Model

There is also a Volume Exclusion Model which assumes that the adsorbates are

competing for adsorption volume, rather than for number of surface sites or area. The condensed

adsorbates are still considered independent and existing as if they are in the pure state; only the

volume to be filled is less for each because of the presence of the other. Jonas and Sansone [86]
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showed individual volumetric capacities at breakthrough times of a second vapor to be additive

for mixtures of benzene and carbon tetrachloride at fixed vapor concentrations. It didn’t seem to

matter if the vapors were added singly, concurrently, or sequentially. Breakthrough times

calculated from the assumptions of volume additivity gave only –14% to +18% deviations from

predictions (Figure 32). This is an experimental confirmation of the Ideal Pore-Filling Solution

assumption (above).

Figure 32. Comparisons of capacities calculated by the Volume Exclusion Model
with capacities at breakthrough of the second vapor in binary mixtures [85].

Doong and Yang [87] proposed a simple Volume Exclusion Model for predicting mixed

gas adsorption. It used the Dubinin/Astakhov single component isotherm equations and required

no numerical iterations to apply.

Lavanchy and Stoeckli [88] successfully applied this model using Dubinin/Astakhov

isotherms to calculate breakthrough times and curves for immiscible mixtures of water and 2-

chloropropane. Miscible mixtures were handled with the Ideal Adsorption Solution Theory

model discussed below.
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3. Lewis Equation Model:

Another simple model for predicting quantities of adsorbed components of a mixture is

based on observations by Lewis et al [89] with hydrocarbon gas mixtures that:

 n i / ni
o = 1 (72)

or for binary mixtures:

(n 1 / n1
o) + (n 2 / n2

o) = 1 (73)

Besides the pure gas adsorbed molar capacities ni
o at the same pressures (concentrations), one

other piece of information is required to solve the equation for binary mixtures individual

adsorbate amounts; two pieces for ternary, etc. For the binary it can be the total number of moles

(n 1 + n 2) adsorbed or some relationship between n 1 and n 2 . Lewis et al. used:

n 1 / n 2 =  (p1 / p2) (74)

where is a proportionality constant determined by trial and error. They showed that n i ratios

from binary data could be used for ternary mixture calculations. They also tried Langmuir

isotherms, Freundlich isotherms, and the Polanyi adsorption potential approach to relate these

molar capacities for mixture components. None of these was very satisfactory for activated

carbons. The Ideal Lewis Model assumes  = 1, which is equivalent to Raoult’s Law.

In the previously cited report by Reucroft et al. [84] the Lewis Equation was used with

poor predictive results for kinetic adsorption capacities of chloroform and methylene chloride in

mixtures, but good for benzene and hexane (Figure 33). Grant and Manes [90] pointed out that

the Lewis Equation must break down for mixtures of high relative volatility.

4. Greenbank and Manes Model

Another approach was developed by Greenbank and Manes [91] for aqueous solutions of

organic compounds and activated carbon. In contrast to the Lewis Equation this model sums the
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fluid (aqueous or air) phase component concentrations Ci relative to those Ci
o calculated for a

pure vapor and an assumed occupied adsorption volume Vads :

 C i / Ci
o = 1 (75).

Any isotherm equation can be used to calculate the Ci
o. An iterative process is used to find the

best Vads that satisfies this sum. Then the adsorbed volume of a component is given by:

Wi = (C i / Ci
o) Vads (76)

Figure 33. Comparisons of capacities calculated by the Lewis Model with kinetic
capacities measured for four vapors in binary mixtures [84].

5. Polanyi Adsorption Potential Theory

Co-adsorbed vapors cannot always be considered independent, especially if they are

miscible with one another. One of the most popular theories to relate adsorption of vapors singly

and in mixtures is the Polanyi Theory. Lewis et al. [89] and Grant and Manes [90] have

developed it for mixtures. The latter assumed: a) a liquid-like adsorbate mixture in which the

adsorption potential of each pure adsorbed component is determined by the total adsorbate

volume of the mixture, b) Raoult’s Law as the relationship between the partial pressure of each

component and its adsorbate mole fraction, and c) the adsorbate volumes are additive. According
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to the Polanyi Theory all characteristic curves (adsorption capacities vs. adsorption potentials) on

a given adsorbent are superimposable to a single curve by a correlating divisor for the adsorption

potential. This correlating divisor can be 1) molar volume calculated at the boiling point

corresponding to adsorption pressure [89], 2) normal boiling point molar volume [90], or, more

generally, 3) the affinity coefficient  of Dubinin [35, 36]. This theory for mixtures states that:

(RT / 1) ln (x1 f1s / f 1) = (RT / 2) ln (x2 f2s / f 2) = etc. (77)

Fugacities f i (and fis for saturated vapors) used by Grant and Manes for high-pressure gases can

be replaced with partial (and saturated vapor) pressures p i or concentrations C i at normal

atmospheric pressures. Using the sum of mole fractions x i in the adsorbate equal to unity and the

additivity of molar volumes allows the calculation of the numbers of moles of each component

adsorbed.

6. Ideal Adsorbed Solution Theory (IAST)

Myers and Prausnitz [92] are credited with the thermodynamically consistent Ideal

Adsorption Solution Theory, sometimes called the Myers-Prausnitz theory. They assumed

Raoult’s Law and the concept of equality of spreading pressures i for each component:

i

o
ip

0 i

o
i

i pd
p

n

A

RT
 (78)

where ni
o is the number of moles of pure component i in the adsorbed phase obtained from a pure

component isotherm for a vapor pressure pi. The value of pi
o is that corresponding to the

spreading pressure. A is the specific area of the sorbent.

Grant and Manes [90] point out that their adsorption theory for mixtures and the IAST are

practically equivalent if the correlating divisor is molar volume.

A major difficulty with the IAST model is the requirement that the adsorption isotherms
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(actually, the ni /pi ratios as functions of pi) be accurately defined to zero pressure and capacity,

so that they can be integrated. Kidnay and Myers [93] used the IAST with Freundlich isotherm

equations to overcome this problem. They also developed a simplified method that avoids the

calculation of spreading pressures, but requires Freundlich isotherms with equal powers of

concentration (seldom the case). Digiano et al. [94] simplified this even further for cases of

identical Freundlich isotherms (very rare). Kaul [95] used Langmuir-Freundlich isotherms with

the IAST. Valenzuela and Myers [96] used Toth and Honig/Reyerson isotherms. Vahdat [24]

used the easily-integrated Langmuir isotherm, because it maintains thermodynamic consistency.

Others (Hill et al. [97], Myers and Prausnitz [92], Sundaram and Yang [98], Mahle [99], etc.)

have fit the lower coverage portion of experimental or theoretical isotherms with empirical

equations that can be integrated analytically.

Alternately, Grant and Manes [90] point out that the integration difficulties for the IAST

can be overcome by using any Polanyi-type correlation. Lavanchy et al. [39] derived analytical

solutions for the integrations of the Dubinin/Radushkevich and Dubinin/Astakhov equations to

calculate spreading pressures. This Myers/Prausnitz-Dubinin (or IAST/DR) theory has the added

advantage of not requiring the reference pure vapor isotherm to be at the same temperature as the

mixture. They found it to work well with miscible mixtures of chlorobenzene/carbon

tetrachloride [39], 1,2-dichloroethane/benzene [100], and the ternary mixture carbon

tetrachloride/chlorobenzene/2-chloropropane, but they did not use it for immiscible 2-

choropropane/water [88]. Multicomponent breakthrough times and curves, as well as equilibrium

adsorbed capacities, were successfully predicted.

Reucroft [84] compared total capacities calculated for three binary mixtures with

measured equilbrium capacities. Figure 34 shows the results. Hexane/methylene chloride

mixtures could not be calculated by the IAST method at the experimental concentrations.
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Figure 34. Comparisons of total binary vapor capacities calculated by the IAST
Model with experimental ones for four binary mixtures [84].

7. Vacancy Solution Model (VSM)

The Vacancy Solution Model was proposed by Suwanayuen and Danner for single gases

[101] and for mixtures [102] of any number of gases. Their four empirical parameter equation

describing the equilibrium relation between the ideal gas phase and the nonideal adsorbed phase

can be found in the references. It includes activity coefficients that can be calculated for gases by

summing over all components and “vacancies”. Mixture component and vacancy interactions are

described by other coefficients. A nonlinear equation solver or iterative approach is required to

obtain adsorbate loadings. Kaul [95] used a simplified version of the VSM that requires only

pure component isotherm data and ignores interaction coefficients. Hydrocarbon gas mixture

data were well predicted.

Costa et al. [103] similarly improved the IAST by modifying Raoult’s Law with the
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introduction of activity coefficients. This, of course, improved data predictions, but added to the

complexity of the model and added the requirement of having binary data to obtain the activity

coefficients. Gusev et al. [104] introduced a multispace adsorption model for multicomponent

adsorption equilibrium. It, likewise, with an added parameter gives better fits of some mixture

data, but requires binary data to establish that parameter for each pair of components.

8. Multicomponent Langmuir Equation

The next category of models for capacities of mixtures is the mixed, combined, or

weighted isotherm equations. Actually, the Molar Proportionality Model can be considered as a

Henry’s Law multicomponent model. The next simplest mixed vapor isotherm is the

Multicomponent Langmuir Equation of Glueckauf [105]:

jjii

ii
i

CbCb1

Ca
q


 (79)

and for a binary mixture:
2211

11
1

CbCb1

Ca
q


 (80)

2211

22
2

CbCb1

Ca
q


 (81)

Cooney and Strusi [106] explored the conditions under which the Multicomponent

Langmuir Equation could be used at nonequilibrium conditions, such as adsorption onto a

sorbent bed from flowing air. They found that the requirement for this application is that the

mass transfer coefficients be of the same order of magnitude. Thomas and Lombardi [107] found

that for benzene/toluene mixtures at equilibrium it was necessary to use a smaller value for bB

(0.322 x 108) than that obtained from the pure benzene isotherm (bB = 0.455 x 108). This can be

attributed to interaction (mixing) between the two adsorbed vapors.
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9. Multicomponent Freundlich Equation

The empirical Freundlich isotherm can be extended to the Multicomponent Freundlich

Isotherm [108]:

ijn
jij

iin
i

)iini(n
ii

i
CaC

Ca
q






(82)

where the ai and ni are pure component Freundlich parameters and the aij and nij are mixture

parameters. For one vapor of a binary mixture:

12n
212

11n
1

)11n1(n
11

1
CaC

Ca
q






(83)

The binary equations introduce six more empirical parameters and require six more equations or

(binary) data to solve. These equations have been used successfully to describe equilibrium data,

at least over a limited concentration range, and to do numerical simulations of column dynamics;

however, they have the shortcomings of being entirely empirical and failing to satisfy Henry’s

Law and thermodynamic consistency at low coverages [109]. The assumptions a12 = a2, a21 = a1,

n12 = n2, n21 = n1, n11 = 1, and n22 = 1 simplify Equation (83) to:

2n
221

1)1(n
11

1
CaC

Ca
q






(84)

which no longer requires binary data.

10. Multicomponent Langmuir/Freundlich Equations

Various combinations of multicomponent Langmuir and Freundlich isotherm equations

have been proposed and used. Basmadjian et al. [110] developed one for binary mixtures that

includes a compositional cross-term in the denominator:

51n
i

41n
221

31n
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11
1

CCbCb1
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
 (85)
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Sheindorf et al. [111] proposed a Langmuir/Freundlich-like multicomponent isotherm equation

with competition coefficients bij obtained empirically from binary mixture data:

qi = ai Ci (Ci +  bij Cj)
(n

1
-1) (86)

Rudling [112] suggested using Langmuir coefficients (obtained from single-component

isotherms) for the Sheindorf competition coefficients, so that only single-component isotherm

data are required.

One Langmuir/Freundlich combination single component equation of special note is that

of Kisarov et al. [25, 26]. It uses relative pressures in place of concentrations and an exponent,

(ni = kT/i) which includes temperature and affinity coefficient. A binary form without cross-

terms would be:

2n
sat222

1n
sat111

1n
sat1111

1
)/p(pb)/p(pb1

)/p(pba
q


 (87)

11. Multicomponent John Equation

A multicomponent John isotherm equation has been proposed [113] to calculate the total

volume of an adsorbed mixture. For binary mixtures:

log log p12 = a12 + b12 log n12 (88)

where a12 = y1 a1 + y2 a2 and b12 = y1 b1 + y2 b2 for gas phase mole fractions yi and single-vapor

John isotherm coefficients ai and b1; p12 = 10N (p1 + p2)/ (p1s + p2s) for partial and saturation

pressures and a constant integer N (must be the same for both pure isotherms); n12 = the total

mixture adsorption amount. If both components have similar adsorbabilities (similar van der

Waals constants), the individual adsorbed amounts can be calculated by ni = yi bi n12 / b12 .

Reucroft et al. [84] applied John’s model to total mixture capacity data with the results shown
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graphically in Figure 35. Total capacities of hexane/methylene chloride mixtures were greatly

overestimated. The others were close to experimental.

Figure 35. Comparisons of total binary vapor capacities calculated by the John
Model with experimental ones for four binary mixtures [84].

12. Multicomponent Dubinin/Radushkevich Equations

Bering et al. [114, 30] extended the Dubinin/Radushkevich equation to the

multicomponent case. For adsorption of a binary mixture of vapors on microporous adsorbents

they expressed total moles adsorbed as:
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where Wo and B = (R/Eo)
2 are taken to be constants for both mixtures and individual

components. Molar volume Vm, affinity coefficient , and adsorption potential RT ln (psat/p) are

weighted by xi , the molar fractions of the components in the adsorption phase. Upon further

defining the standard state of a mixture, they obtained an alternate equation:
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Since mole fractions are not known another equation is needed; Bering et al. [114] used the

Lewis Equation (72) and obtained good agreement with experimental capacities for ethyl

chloride/diethyl ether mixtures. Reucroft et al. [84] used this approach and obtained the results

graphed in Figure 36. Alternately, Raoult’s Law can be assumed to calculate a value for the

standard state pressure p12 = x1 psat 1 + x2 psat 2 (binary mixture case). If other parameters, such

as Wo and B, are not the same for all pure components, it may be necessary to weight-average

them with xi also.

Figure 36. Comparisons of total binary vapor capacities calculated by a Dubinin
Mixture Model with experimental ones for four binary mixtures [84].
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C. Literature Comparisons of Capacity Models

Kaul [95] reviewed some of the above and other single vapor isotherms for suitability

with mixtures and concluded: The BET Isotherm is known to be applicable only over a limited

(low) range of pressure and mixture predictions using it are unacceptable. The Statistical

Thermodynamics Correlation is only applicable for zeolites. The Viral Isotherm Equation is

empirical and difficult to extrapolate and apply to mixtures, especially when enough terms are

added to make it accurate for single vapors. Kaul’s simplified version of the VSM gave results

similar to the IAST at low coverages of hydrocarbon gases. At higher pressures and coverages

and for azeotropic mixtures the original VSM predicted the data better than the IAST, since the

VSM uses additional parameters (empirical binary interaction coefficients) to incorporate

nonideality.

Rasmuson [27] compared the Volume Exclusion and Molar Proportionality approaches

with the more complex and integration-requiring IAST. With toluene/butanol mixtures the total

volume assumption overestimated butanol capacities more than the IAST, but toluene capacities

less. The fixed total moles assumption gave even worse predictions for butanol and slightly

better for toluene.

Figures 30 and 34-36 have shown the results of the Reucroft et al [84] study of four

mixture models and mixtures of chloroform/methylene chloride, n-hexane/methylene chloride,

benzene/n-hexane, and chloroform/carbon tetrachloride at three ratios each. Table IX gives them

in a different format. The Molar Proportionality Model predictions were closest to the total

equilibrium capacity data most of the time. Although the IAST didn’t “win” any comparisons, it

had the smallest range of deviations. In attempts to predict individual component kinetic

capacities from total equilibrium capacities, the Molar Proportionality Method was more

successful than the Lewis Equation (compare Figures 31 and 33).
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Table IX. Results of the Comparisons by Reucroft et al. [84] of Mixture Models

Model Tested for
Prediction

Number of Times Closest to
the Data

Range of Deviations of Predictions
from the Data

Total Mixture
Equilibrium

Capacity

Component
Kinetic

Capacities

Total Mixture
Equilibrium

Capacity

Component
Kinetic

Capacities
Molar Proportionality 7 14 -2 to +34 % -73 to + 16 %
IAST 0 -5 to +10%
Multicomponent DR 2 -7 to +33 %
Multicomponent John 3 -3 to +90 %
Lewis Equation 4 -81 to +21 %

Valenzuela and Myers [115] compared predictions of the Grant-Manes, IAST, and VSM

models with experimental data for 22 mixtures of hydrocarbon and other gases on activated

carbons. They calculated the average errors in selectivity shown in Table X. The average error of

35% in selectivity for IAST corresponds to an average absolute error of 0.04 in mole fraction.

This table also shows the number of “bests” for each model (ties are counted twice) obtained

from Appendix 3 in their article.

Table X. Results of the Comparisons by Valenzuela and Myers [115] of Mixture Models

Model Tested for
Prediction

Number of
Times Closest

to the Data

Average
Absolute

Relative Errors
IAST 69 35 %
VSM 55 41 %
Grant-Manes 25 80 %

Doong and Yang [87] compared equations they developed to the IAST, the Grant-Manes

Model, and the Multicomponent DR model proposed by Bering et al. They commented that latter

three were more difficult to apply, since they require numerical iteration. Table XI shows a

summary of their model comparison results for hydrocarbon gases on an activated carbon and a

molecular sieve carbon. It can be seen that the Grant-Manes and IAST models were most
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successful. However, acetone/hexane and methanol/hexane mixtures on a molecular sieve carbon

the Doong-Yang Mixture Model matched the data best, though not very well. The graphs (no

data tabulated) suggest that a simple Molar Proportionality model would have done (on the

average) as well as or better than any of them for these latter two vapor mixtures.

Table XI. Results of the Comparisons by Doong and Yang [87] of Mixture Models

Model Tested for
Prediction

Number of
Times Closest

to the Data

Average
Absolute

Relative Errors
Doong-Yang 1 20.3 %
Grant-Manes 7 16.2 %
IAST 6 17.5 %
Multicomponent DR 2 28.8 %

D. New Comparisons of Selected Mixture Models

1. Selection of Mixture Models

Twelve models (with some variations) selected from those described above for further

study are listed in Table XII. The main criteria for selection were that they could be used

predictively and with a minimum of input information. The minimum input should be pressures

(concentrations) and adsorption isotherms (with known parameters) for the individual

components of a mixture. On this basis the Vacancy Solution Model was excluded; it requires

too many empirical parameters even for the single component isotherms. The VSM is also

mathematically difficult to apply. Other models (e.g., Multicomponent Freundlich and

Langmuir) that rigorously require binary interaction data were either excluded or used in their

simplest forms with parameters from single component isotherms only.

2. Selection of Database

The sets of data mentioned in literature model comparisons were considered for a

reference database to compare predictive models for mixtures of vapors. However, many of them
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are data for light hydrocarbon and other gases. For respiratory protection the concern is with

vapors of larger molecules, most of which condense at normal temperatures. Also, often the data

given in these papers are limited in numbers and scope.

Fortunately, a Swiss group at Neuchatel and Spiez [39, 100] has published tabulations of

experimental data of adsorbed capacities for mixtures of vapors for wide ranges of compositions.

The two mixtures are chlorobenzene/carbon tetrachloride (very different volatilities) and

benzene/1,2-dichloroethane (similar volatilities).

3. Single Component Adsorption Isotherms for Mixture Models

Lavanchy et al.[39] have also provided DR equation parameters that allow calculation of

single component capacities for the four components of the two binary mixtures studied. These

can be used directly as model inputs or used to obtain parameters for other isotherm equations.

Figures 37 and 38 show Polanyi characteristic curve (isotherm) plots for the two mixtures

using capacities obtained from the DR equation and parameters given. Affinity coefficients were

Figure 37. Polanyi correlation curve for pure benzene and 1,2-dichloroethane
superimposed by the selection of relative affinity coefficients shown.
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Figure 38. Polanyi correlation curve for pure chlorobenzene and carbon
tetrachloride superimposed by the selection of relative affinity coefficients shown.

adjusted to coalesce the pairs of chemical in each mixture as much as possible. Linear fits were

used to calculate capacities used in the Grant-Manes model.

Figures 39 and 40 show best fits of linearized Freundlich isotherms obtained by a similar

procedure. In these cases there is no coalescing parameter and none is needed for the simplified

Multicomponent Freundlich model (no cross-component terms). Slopes and intercepts of these

isotherm plots give the single component Freundlich parameters needed.

Figure 39. Linear Freundlich adsorption isotherms for pure benzene and 1,2-
dichloroethane calculated from DR isotherm correlations.
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Figure 40. Linear Freundlich adsorption isotherms for pure chlorobenzene and
carbon tetrachloride calculated from DR isotherm correlations.

Figures 41 and 42 show linearized Langmuir isotherm plots obtained and used similarly.

The chlorobenzene, benzene, and 1,2-dichloroethane capacities clearly do not conform to the

Langmuir equation, but the best-fit straight lines were used in the Multicomponent Langmuir

model anyway.

Figure 41. Linear Langmuir adsorption isotherms for pure benzene and 1,2-
dichloroethane calculated from DR isotherm correlations.

Freundlich Isotherms

y = 1.99E-01x - 6.36E+00

y = 2.38E-01x - 6.97E+00

-7.0

-6.5

-6.0

-5.5

-5.0

-2 -1 0 1 2 3 4 5

ln (p)

ln
(M

o
le

s
A

d
so

rb
e

d
/

g
)

Chlorobenzene

Carbon Tetrachloride

Langmuir Isotherms

y = 5.71E+02x + 3.84E+02

y = 1.78E+03x + 3.16E+02

0

500

1000

1500

2000

2500

3000

0 1 1 2 2 3 3 4

1 / (p)

1
/

(M
o

le
s

A
d

so
rb

e
d

/
g

)

Benzene

1,2-Dichloroethane



80

Figure 42. Linear Langmuir adsorption isotherms for pure chlorobenzene and
carbon tetrachloride calculated from DR isotherm correlations.

A similar problem of nonlinearity of Kisarov (combined Langmuir and Freundlich

isotherm with affinity coefficients) isotherms is shown in Figures 43 and 44. The

chlorobenzene/carbon tetrachloride pair of component curves could be coalesced by selection of

the KT/ parameters. This process was less successful with benzene/1,2-dichloroethane. Neither

coalesced curve was linear as predicted by the Kisarov equation, but the best fits were used for

testing the Multicomponent Kisarov L/F Model.

Figure 43. Linear Kisarov adsorption isotherms for pure benzene and 1,2-
dichloroethane calculated from DR isotherm correlations.
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Figure 44. Linear Kisarov adsorption isotherms for pure chlorobenzene and carbon
tetrachloride calculated from DR isotherm correlations.

John linearized, single-component isotherm plots in Figures 45 and 46 were linear in only

certain regions for chlorobenzene and benzene. The Multicomponent John Model was tested

with and without fitting the isotherm equations to only the linear regions.

Figure 45. Linear John adsorption isotherms for pure benzene and 1,2-
dichloroethane calculated from DR isotherm correlations.
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Figure 46. Linear John adsorption isotherms for pure chlorobenzene and carbon
tetrachloride calculated from DR isotherm correlations.

4. Results of Applying Predictive Mixture Models

Table XII and Figures 47 - 75 show the results of applying models to the selected data.

Figure 47. Results of applying the Molar Proportionality Model to equilibrium
capacity data for mixtures of chlorobenzene and carbon tetrachloride [39].
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Table XII. Accuracies and Precisions of Predictive Models for Mixtures

Mixture Model Mixture
Components

A/B*

Component A Component B

Average
Accuracy

(Calc/Exp)

Average
Precision
(mol/kg)

Average
Accuracy

(Calc/Exp)

Average
Precision
(mol/kg)

Molar Proportionality CB/CT 0.83 0.94 6.89 3.75
Molar Proportionality B/DCE 2.00 3.55 3.96 11.77
Volume Exclusion CB/CT 0.86 0.96 6.85 3.73
Volume Exclusion B/DCE 2.07 3.81 3.87 14.9
Lewis Ideal CB/CT 1.05 1.30 6.68 3.60
Lewis Ideal B/DCE 2.25 4.69 3.79 14.10
Greenbank-Manes CB/CT 0.97 0.20 1.67 0.43
Greenbank-Manes B/DCE 0.72 0.29 0.94 0.23
Grant-Manes CB/CT 0.98 0.20 1.67 0.44
Grant-Manes B/DCE 0.88 0.14 1.08 0.16
IAST/DR CB/CT 1.07 0.19 1.45 0.40
IAST/DR B/DCE 0.96 0.11 1.04 0.13
Freundlich Simplified CB/CT 1.24 0.47 2.38 0.65
Freundlich Simplified B/DCE 1.33 0.67 1.51 1.02
Langmuir Simplified CB/CT 0.84 0.40 1.32 0.28
Langmuir Simplified B/DCE 0.78 0.47 0.64 0.66
Kisarov L/F Simplified CB/CT 0.83 0.39 1.10 0.53
Kisarov L/F Simplified B/DCE 0.36 0.77 0.56 0.72
Rudling/Sheindorf L/F CB/CT 1.02 0.28 1.71 0.50
Rudling/Sheindorf L/F B/DCE 1.15 0.46 0.99 0.22
John-All Isotherm Data CB/CT 0.67 0.27 2.03 0.35

Linear Isotherm Data CB/CT 0.51 0.34 2.19 0.36
John-Linear Isotherm Data B/DCE 0.91 0.34 1.00 0.32
Multicomponent DR - A CB/CT 0.32 0.52 2.18 0.46
Multicomponent DR - B CB/CT 0.32 0.52 2.20 0.42
Multicomponent DR - C CB/CT 0.29 0.55 2.11 0.45
Multicomponent DR - A B/DCE 0.86 0.13 1.13 0.17
Multicomponent DR - B B/DCE 0.78 0.21 1.04 0.08
Multicomponent DR - C B/DCE 0.76 0.16 0.95 0.21

* B = benzene, CT = carbon tetrachloride, CB = chlorobenzene, DCE = 1,2-dichloroethane
Numbers in bold print are the best agreements of models with data in each column for each
vapor. Those in italics are + 10 % accuracy or < 0.20 mol/kg Standard Deviation.
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Figure 48. Results of applying the Molar Proportionality Model to equilibrium
capacity data for mixtures of benzene and 1,2-dichloroethane [100].

Figure 49. Results of applying the Volume Exclusion Model to equilibrium capacity
data for mixtures of chlorobenzene and carbon tetrachloride [39].

Molar Proportionality

y = 3.96x

y = 1.9877x

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5

Experimental Equilibrium Capacity (mol/kg)

C
a
lc

u
la

te
d

E
q
u
il
ib

ri
u
m

C
a
p
a
c
it
y

(m
o
l/
k
g
)

Benzene

1.2-Dichloroethane

Stoeckli

et al. data

Std Dev = 3.55

Std Dev = 11.77

Volume Exclusion

y = 6.8531x

y = 0.8562x

0

2

4

6

8

10

12

14

16

0 1 2 3 4

Experimental Equilibrium Capacity (mol/kg)

C
a

lc
u

la
te

d
E

q
u

il
ib

ri
u

m
C

a
p

a
c
it

y
(m

o
l/

k
g

)

Chlorobenzene

Carbon Tetrachloride

Lavanchy et al.

data

Std Dev = 0.96

Std Dev = 3.73



85

Figure 50. Results of applying the Volume Exclusion Model to equilibrium capacity
data for mixtures of benzene and 1,2-dichloroethane [100].

Figure 51. Results of applying the Ideal Lewis Proportionality Model to equilibrium
capacity data for mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 52. Results of applying the Ideal Lewis Proportionality Model to equilibrium
capacity data for mixtures of benzene and 1,2-dichloroethane [100].

Figure 53. Results of applying the Greenbank-Manes Model to equilibrium capacity
data for mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 54. Results of applying the Greenbank-Manes Model to equilibrium capacity
data for mixtures of benzene and 1,2-dichloroethane [100].

Figure 55. Results of applying the to Grant-Manes equilibrium capacity data for
mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 56. Results of applying the Grant-Manes Model to equilibrium capacity data
for mixtures of benzene and 1,2-dichloroethane [100].

Figure 57. Results of applying the IAST/DR Model to equilibrium capacity data for
mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 58. Results of applying the IAST/DR Model to equilibrium capacity data for
mixtures of benzene and 1,2-dichloroethane [100].

Figure 59. Results of applying the Simplified Freundlich Model to equilibrium
capacity data for mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 60. Results of applying the Simplified Freundlich Model to equilibrium
capacity data for mixtures of benzene and 1,2-dichloroethane [100].

Figure 61. Results of applying the Simplified Langmuir Model to equilibrium
capacity data for mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 62. Results of applying the Simplified Langmuir Model to equilibrium
capacity data for mixtures of benzene and 1,2-dichloroethane [100].

Figure 63. Results of applying the Kisarov Langmuir/Freundlich Model to equili-
brium capacity data for mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 64. Results of applying the Kisarov Langmuir/Freundlich Model to
equilibrium capacity data for mixtures of benzene and 1,2-dichloroethane [100].

Figure 65. Results of applying the Rudling/Sheindorf Model to equilibrium capacity
data for mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 66. Results of applying the Rudling/Sheindorf Model to equilibrium capacity

data for mixtures of benzene and 1,2-dichloroethane [100].

Figure 67. Results of applying the John Mixture Model to equilibrium capacity data
for mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 68. Results of applying the John Mixture Model to equilibrium capacity data
for mixtures of chlorobenzene and carbon tetrachloride [39]. Only the linear portion
of the chlorobenzene John isotherm was used.

Figure 69. Results of applying the John Mixture Model to equilibrium capacity data
for mixtures of benzene and 1,2-dichloroethane [100]. Only the linear portion of the
benzene John isotherm was used.
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Figure 70. Results of applying a variant of the Mixed DR Model to equilibrium
capacity data for mixtures of chlorobenzene and carbon tetrachloride [39].

Figure 71. Results of applying a variant of the Mixed DR Model to equilibrium
capacity data for mixtures of chlorobenzene and carbon tetrachloride [39].
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Figure 72. Results of applying a variant of the Mixed DR Model to equilibrium
capacity data for mixtures of chlorobenzene and carbon tetrachloride [39].

Figure 73. Results of applying a variant of the Mixed DR Model to equilibrium
capacity data for mixtures of benzene and 1,2-dichloroethane [100].
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Figure 74. Results of applying a variant of the Mixed DR Model to equilibrium
capacity data for mixtures of benzene and 1,2-dichloroethane [100].

Figure 75. Results of applying a variant of the Mixed DR Model to equilibrium
capacity data for mixtures of benzene and 1,2-dichloroethane [100].

Bering Mixed DR Model B

y = 1.0437x

y = 0.782x

0

1

2

3

4

5

0 1 2 3 4 5

Experimental Equilibrium Capacity (mol/kg)

C
a

lc
u

la
te

d
E

q
u

il
ib

ri
u

m
C

a
p

a
c
it

y
(m

o
l/

k
g

)

Benzene

1,2-Dichloroethane

Stoeckli

et al. data

Std Dev = 0.21

Std Dev = 0.08

Bering Mixed DR Model C

y = 0.9515x

y = 0.7617x

0

1

2

3

4

5

0 1 2 3 4 5

Experimental Equilibrium Capacity (mol/kg)

C
a

lc
u

la
te

d
E

q
u

il
ib

ri
u

m
C

a
p

a
c
it

y
(m

o
l/

k
g

)

Benzene

1,2-Dichloroethane

Stoeckli

et al. data

Std Dev = 0.16

Std Dev = 0.21



98

E. Multicomponent Vapor Adsorption Kinetics

There are fewer theoretical models and experimental data concerning the kinetics (rates)

of adsorption of mixtures of vapors onto sorbent beds from flowing air. Common observations

include: a) The more weakly adsorbed vapor of a pair is the one whose ratio of capacity to

concentration (in compatible units—molar, volumetric, or gravimetric) is the smallest. b) The

more weakly adsorbed vapor 1 moves through the sorbent bed more rapidly than the more

strongly adsorbed vapor 2. c) Vapor 2 displaces vapor 1 from the adsorbent to some extent, but

not necessarily completely. c) This displacement can cause “rollover” or “overshoot”, in which

concentration of vapor 1 downstream of the adsorption wavefront of vapor 2 can exceed the

concentration of the vapor 1 entering the bed. d) The breakthrough curves of the individual

mixture components have S- or sigmoidal-shapes similar to those observed for single vapors. e)

Water vapor behaves differently than organic vapors on activated carbons.

Cooney and Strusi [106] defined five (distance into a sorbent bed) zones of vapor

concentration in a sorbent bed with flowing binary mixture (Figure 76). Complete breakthrough

curves for two components can also be defined by five (time) zones, since such curves are

obtained from vapor concentration measurements at the bed exit as the adsorption pattern moves

through the bed. These breakthrough curve zones are shown in Figure 77. The “rollover” effect

(C1 > C1
o) due to displacement of vapor 1 by vapor 2 is seen in Zones II, III, and IV.
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Figure 76. Zones of vapor concentrations C1 and C2 within a 2-cm deep carbon bed
challenged with a mixture of two vapors. In Zone I the carbon is equilibrium
saturated with both vapors. In Zone II Vapor 2 is adsorbing and displacing Vapor 1
from its saturated equilibrium. In Zone III Vapor 1 is at equilibrium at a higher
(rollover) concentration than that entering the bed. In Zone IV Vapor 1 is adsorbing
from this higher concentration without interference from Vapor 2.

Figure 77. Zones of vapor concentrations in effluent (breakthrough curves) from a
carbon bed challenged with a mixture of two vapors at concentrations C1

o and C2
o.

Yoon et al. [116-119] fit a Reaction Kinetic-type model to such multicomponent

breakthrough curves for respirator cartridges:
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and extracted adsorption rate coefficients k’i as well as breakthrough midpoints i. The mixtures

included acetone/m-xylene, acetone/cyclohexane/toluene, ethyl acetate/cyclohexane/toluene,

cyclohexane/toluene/m-xylene, ethyl acetate/cyclohexane/toluene/m-xylene, and

acetone/cyclohexane/toluene/m-xylene. For a binary mixture they concluded that the

experimental adsorption rate coefficient of the more strongly adsorbed vapor, m-xylene, was

unchanged by the presence of acetone. For acetone k’1 was changed by m-xylene present,

apparently due to displacement (affecting 1 ) and distortion (rollover) of the acetone

breakthrough curve. However, when k’11 averages are compared (13.6 [Std Dev = 1.8] for the

mixtures vs. 13.9 [Std Dev = 0.4] for the pure acetone data) there is no significant difference. For

one ternary and one quaternary mixture the average k’11 for acetone was 14.9 + 0.9, again not

significantly different. Only in one case of overlapping acetone/m-xylene breakthrough curves

was the k’11 for m-xylene reduced (13.9 vs 24.0 + 2.2 for four other mixtures).

Jonas et al. [82] also saw no statistical differences between rate coefficients for

components in mixtures and alone for carbon tetrachloride, chloroform, and benzene. Calculated

ki were referenced to carbon tetrachloride assuming inverse square dependence on molecular

weight. Experimental rate coefficients were obtained from 1% breakthrough time vs. bed weight

plots. Deviations of calculated values from experimental ones ranged from –30 to +27% with an

average of +15%. Cohen et al. [85] reached the same conclusion that there was no significant

difference, while acknowledging the inaccuracy of obtaining rate coefficients from breakthrough

time plots. Thomas and Lombardi [107] in doing successful calculations for benzene/toluene

mixtures assumed equivalent rate coefficients as for the pure vapors.
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On the other hand, Zwiebel et al. [120] present good arguments why this assumption may

not be valid. It assumes no component interactions and that the mechanism of adsorption is not

affected by composition. Due to observed displacement, in some parts of the sorbent bed there is

single-component adsorption, while in others there is simultaneous adsorption and desorption of

different vapors. They showed experimentally with benzene/methylene chloride mixtures that the

adsorption rate coefficients for the more weakly adsorbed methylene chloride in the mixture

were close to those observed for methylene chloride alone. However, there was a big difference

for benzene; k2 was significantly smaller in the mixtures. From the graph shown for two carbons,

it looks like the difference was not a consistent function of concentration, but averaged about 25

sec-1 (1500 min-1).

Marutovsky and Bulow [121] pointed out that for external mass transfer, diffusion

limiting cases, calculations show that diffusion interactions can be neglected. However, they did

experimentally see interaction effects for pentane/heptane and hexane/ammonia gas mixtures on

a zeolite. From this they concluded that the component whose relative adsorption proceeds faster

retards the internal mass transfer of the other(s). This leads to the question of what is the mass

transfer rate limiting step for an application of concern.

Robbins and Breysse [83] obtained results on the effects of second vapors (toluene, p-

fluorotoluene, p-dichlorobenzene, or o-dichlorobenzene) on the measured adsorption rate

coefficients for p-xylene or pyrrole. They reported some correlation of these effects with boiling

point of the second vapor. This suggests that order of elution may have determined how (+ or –

or not at all) rate coefficients were affected in the mixtures.

F. Models for Breakthrough Curves of Multicomponent Mixtures

Yoon, Lara et al. [116-119] produced a series of papers in which they show how to

describe multicomponent breakthrough curves using capacity terms i, rate coefficients k’i, and
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displacement parameters Am. Displacement ratios and displacement fractions were also

calculated. Since they obtained these parameters empirically from measured breakthrough

curves, this was a descriptive (correlative) model, instead of a predictive one. With only a few

parameters this model was able to well describe the breakthrough curves from which the values

of these parameters were calculated.

A predictive multicomponent model would need to develop values for these parameters

from independent sources, e.g., single and multiple component adsorption isotherms and rate

coefficient models (discussed above).

Vahdat et al. [24] has taken just such an approach to transform the Yoon/Lara model into

a predictive model. They used Langmuir single-component isotherm equations with the IAST

mixture model. Rate coefficients were obtained from single-component breakthrough times at

0.001 and 0.999 breakthrough fractions, assuming a symmetric Wheeler/Reaction Kinetic model.

We have transformed the steps they suggest for applying this model into a generic procedure in

Table XIII.

Table XIII. A Generic Procedure for Predicting Breakthrough Curves and Times of
Components of Binary Mixtures of Vapors from Vahdat et al. [24]

Step Description Comments
1 Choose an isotherm equation and obtain

pure component parameters for it.
Vahdat et al. used the Langmuir equation

2 Use a multicomponent model to get
capacities We i for each component i at
each concentration Ci.

Vahdat et al. used the Ideal Adsorbed Solution
Theory Model with the easily integrated
Langmuir isotherm equation.

3a Obtain a rate coefficient kv2 for pure
component 2 (the later eluting one).

Vahdat et al. obtained rate coefficients from
breakthrough times at 0.001 and 0.999
breakthrough fractions. This assumes such
times have been measured, that the
breakthrough curve is symmetrical, and that
the Reaction Kinetic form of the Wheeler
equation applies.
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3b Calculate a breakthrough curve from
kv2, C2, and We2 and the selected
breakthrough curve equation.

This assumes that W e2 is reduced from the
single component capacity Wo

e2, but the rate
coefficient is not affected by the first vapor.
This will give breakthrough times for selected
breakthrough fractions or concentrations of 2.

4a Calculate the single component capacity
Wo

e1 of component 1 at C1.
Use the selected single-component adsorption
isotherm equation and parameters.

4b Estimate the rollover (overflow)
concentration C1

max of component 1.
See Equations (92) and (93) and accompanying
discussions in the text.

5 Calculate the single component 1
capacity We1

max at C1
max

Use the selected single-component adsorption
isotherm equation and parameters

6a Obtain a rate coefficient kv1 for pure
component 1.

See 3a and 3b comments above.

6b Calculate a breakthrough curve from
kv1, C1

max, We1
max , and the selected

breakthrough curve equation.

See 3a and 3b comments above. This will give
breakthrough times for selected breakthrough
fractions or concentrations of component 1.

7-8 Reiterate this process to get a consistent
value of C1

max .
This is probably only necessary to get full
breakthrough curves, but not if only
breakthrough times at low breakthrough
fractions are desired.

Vahdat et al. [24] also presented an equation for estimating C1
max, the maximum rollover

concentration of the first eluting component due to displacement by the second:
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This equation assumes displacement of one condensed volume by another (Volume Exclusion

Model) and applies if the concentrations Ci and capacities Wei are in gravimetric units (e.g.,

g/cm3 and g/g, respectively). For Ci in molar or volumetric units (e.g., mol/L or ppm) this

equation must include molecular weights Mwi :
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Another type of model for breakthrough curve generation is numerical integration of

equations including mass conservation, adsorption isotherms, and rate expressions. This is
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beyond the scope of this report, but holds more promise for the future as desktop and portable

computing power increases. An example of this approach is the work of Lavanchy and Stoeckli

[88].

G. Discussion

1. Ease of Application of Capacity Models for Vapor Mixtures

Our experience with applying adsorption capacity models to data has led to some

conclusions that may be relevant to their usefulness for estimating breakthrough times of

components of vapor mixtures in air flowing through a packed carbon bed (e.g., a respirator

cartridge). An order of increasing complexity and difficulty of application is given in Table XIV

along with some comments.

Table XIV. Order of Increasing Difficulty of Application of Mixture Models

Difficult Category Capacity Model Comments
Direct Calculation Molar Proportionality

Volume Exclusion Requires liquid densities
Ideal Lewis Raoult’s Law assumed
Multicomponent Langmuir Simplified version
Multicomponent Freundlich Simplified version
Multicomponent John

Iterative Multicomponent DR Combined with Lewis Eq.
Greenbank-Manes Inverse isotherm equation
Grant-Manes

Characteristic Curve Needed Grant-Manes Polanyi type
Kisarov Combined L/F

Second Isotherm Equation Rudling/Sheindorf Freundlich and Langmuir
Isotherm Integration Ideal Adsorbed Solution

Theory
May be circumvented by using
an isotherm equation that can
be integrated analytically

Vacancy Solution Method No such circumvention has
been proposed due to
complexity and empirical
nature of isotherms
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2. Second Equation Recommendation

Mixture capacity models based on single-component adsorption isotherms often require a

second equation to solve for individual capacities. The two most popular are Raoult’s Law,

Equation (65), and the Lewis Equation (72). Comparisons of Reucroft et al. [84] showed molar

proportionality gave best results 3.5 times more often than Lewis’ equation (Table X). In the

model comparisons in Table XIII the ideal Lewis Equation Method gave worse predictions than

the Molar Proportionality Method for benzene, chlorobenzene, and 1,2-dichloroethane and only

slightly better for carbon tetrachloride. Except for the original experiments and conditions, we

have found no cases in which the Lewis equation consistently produced significantly better

results than Raoult’s Law. Until such is produced the former should be abandoned as a second

equation in favor of the latter.

3. Mixture Capacity Model Results Compared

The best agreements of model predictions with experimental data are shown in Table

XIII in bold print. The numbers in italics are within + 10 % accuracy or < 0.20 mol/kg Standard

Deviation.

The model which had the most such “bests” (3) was the IAST/DR Model developed by

the Swiss group [39, 100]. As shown in Tables X – XII, others have also found good precision

with this model. The Grant-Manes Model also did consistently well (both accurate and precise)

for chlorobenzene, benzene, and 1,2-dichloroethane. The Multicomponent DR models showed

some success with benzene and 1,2-dichloroethane, but not with chlorobenzene or carbon

tetrachloride. Doong and Yang [87] also found similar accuracies and precisions for the IAST

and Grant-Manes Models (Table XII); but, Valenzuela and Myers [115] did not (Table XI).

None of the models did consistently well for carbon tetrachloride; the best precision was

0.28 mol/kg Standard Deviation with the Simplified Langmuir Model, which is surprising (and,
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perhaps, coincidental) considering how poorly the data fit the Langmuir isotherm equation

(Figure 42). Carbon tetrachloride has the largest molecular weight, greatest liquid density, and

highest volatility of the four compounds studied; one or more of these parameters may be more

important than the models account for.

4. OSHA Guidance for Mixtures

The Occupational Safety & Health Administration (OSHA) has provided guidance on

factors that can reduce cartridge service life [122, 123]. The two guidance statements on

accounting for multiple contaminants can be considered a “Rule-of-Thumb” model. Therefore,

we have analyzed this guidance in light of the reviews of models and data given earlier in this

report:

“Where the individual compounds in the mixture have similar breakthrough times
(i.e., within one order of magnitude), service life of the cartridge should be established
assuming the mixture stream behaves as a pure system of the most rapidly migrating
component or compound with the shortest breakthrough time (i.e., sum up the
concentration of the components).” [122]

Comments on this statement:

1) This assumes complete displacement of one compound by another, which is

not likely in most cases, but is a conservative assumption. However,

displacement is not limited to vapors of similar volatilities (“i.e., within one

order of magnitude”), so this direction could be misleading, particularly

combined with the following statement (see below).

2) Adding the concentration of the displacing compound to that of the displaced

one can be inaccurate if the wrong concentration units are used. Adding ppm,

as specified in [123] implies mole-for-mole displacement. Since activated

carbon is a volumetric adsorbent (Theory of Micropore Volume Filling), the

displacement is more accurately condensed volume-for-condensed volume.
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The ppm concentrations should be multiplied by their respective liquid molar

volumes before adding them together; then the sum should be converted back

to ppm by dividing by the molar volume of the displaced vapor.

3) It would be even more in error to add concentrations in g/m3, since that implies

gram-for-gram displacement. This has no physical or thermodynamic validity.

“Where the individual compounds in the mixture vary by 2 orders of magnitude
or greater, the service life may be based on the contaminant with the shortest
breakthrough time.” [122]

Comments on this statement:

1) Just because a second vapor is less volatile and has a much longer (“by 2 orders of

magnitude or greater”) breakthrough time does not mean it will not displace a

much more volatile one. In fact, it is more likely to do so.

2) Ignoring the second vapor would be anti-conservative and overestimate the

breakthrough time of the more volatile compound.

Perhaps this rule assumes the concentration of the much less volatile compound would be

negligibly small; however, this assumption is not necessary.
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IV. Models for Adsorption of Mixtures of Water and Organic Vapors (Humidity
Effects)

A. Fundamentals

As with models for single vapors and mixtures of multiple organic vapors, models for

adsorption of mixtures of organic vapors with water vapor (humidity) must include capacity and

kinetic contribution parameters. No models have been found for directly calculating

breakthrough times (service lives) of packed carbon beds through which organic vapors and high

concentrations of water vapor are flowed (breathed). A few relative humidity “correction

factors” for dry condition breakthrough times have been published, but these have very limited

applicability. Therefore, to set the stage for developing good models for predicting breakthrough

times at high humidities models of the effects on capacity and adsorption rate coefficients will be

considered separately.

There are two situations that can be considered in developing humidity effect models

from experimental data: 1) The cartridge or test carbon has been equilibrated (preconditioned,

prehumidified, pre-equilibrated) with air at the humidity of the test. Or, 2) it is in its natural or

prepared state equilibrated at a different humidity than the test. The first situation represents a

worst-case application where the cartridge has been exposed (e.g., unsealed) to the use

atmosphere before being used on a respirator. It is easier to handle theoretically, since

presumably little or no water is added to or removed from the carbon during a test (or use). There

is no temperature change due to water condensation or evaporation. However, the second

situation is more realistic. In a properly controlled respirator program, it is likely that cartridges

would be stored sealed from atmospheric humidity and used immediately upon unsealing.

Testing or use without preconditioning at the test or use humidity can introduce complications,

such as temperature changes or water loadings changing with time of use. These make modeling
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more difficult.

Most studies of humidity effects (presence of water vapor) on adsorption capacities have

been reported for equilibrium situations. Some have been tested against theoretical and

correlation models. There are fewer studies of humidity effects on adsorption rates from flowing

air and on breakthrough times.

B. Empirical and Correlation Models for High Humidity Capacities

The simplest model for the effect of relative humidity on adsorption capacity of an

organic vapor is an empirical one proposed by Chou and Chiou [124]. Dry isotherms of

cyclohexane and n-hexane were fit to Langmuir isotherm equations. At higher humidities these

capacities were reduced according to the equation (in terms used previously in this report):

1/n

(0%RH)e

(RH)e
(RH)k-1

W

W
 (94)

Empirical parameters k and n, tabulated for the two compounds at temperatures 33.6 – 76.4 oC,

were functions of temperature and chemical. Fitting of published data for trichloroethylene,

toluene, and benzene showed that these parameters are also functions of organic vapor

concentrations. The value of n approached 0.5 at 30 oC. A difficulty with this equation is that

such ratios can become negative at high humidities.

A second empirical model is that of Wood. [125,126] He developed and tested a model

for relative humidity effects and vapor concentration effects on adsorption capacities of charcoal

beds for vapors. It is a Langmuir/Freundlich-like equation with an empirical power function of

relative humidity. It predicts that ratios of organic vapor capacities or breakthrough times at

different humidities have the form:

n

(RH)e

0%RH)5(e

(RH)b

0%RH)5(b
(RH)k1

W

W

t

t
 (95)
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In this case n (experimental values 3.6 – 8.4) is interpreted as the average number of water

molecules clustered in the adsorbed phase. He applied it to both preconditioned bed data

(including Jonas et al. [127]) and dry bed data (including Werner [128] and Nelson et al. [69]) to

yield linear plots of relative breakthrough times or inverse capacities. Slopes are functions of the

adsorbate, as shown in Figure 78 for data of Nelson for four chemicals.

Figure 78. Ratios of 10% breakthrough times at two humidities as a reciprocal
function of concentration.

Figure 79 shows that these ratios are not functions of breakthrough fractions, at least for

10 – 50% breakthrough. Since these slopes have not been related to independently obtainable

properties, this is only a correlation method, not a predictive model. It can be used to interpolate

or extrapolate capacity data at different relative humidities. Breakthrough time correction factors

calculated from data fits and Equation (95) should also be functions of concentration and

chemical vapor.

Nelson's 1970s Data, 10% Breakthrough

y = 55x + 1

y = 138x + 1

y = 97x + 1

y = 22x + 1
0.0

0.5

1.0

1.5

2.0

2.5

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Reciprocal of Concentration (1/ppm)

R
a

ti
o

o
f

B
re

a
k
th

ro
u

g
h

T
im

e
s

(5
0
%

/8
0
%

R
H

)

Methyl Chloroform

Methyl Acetate

Benzene

Acetone



111

Figure 79. Ratios of breakthrough times at two humidities and two breakthrough
percents as a reciprocal function of concentration.

Cohen et al. [129] applied this method of Wood to data from respirator cartridges and

respirator carbon tubes (RCTs) containing the same carbon. Inverse relative (to 50% RH)

breakthrough times for both coincided on the same straight line with n = 3.8 as the power of RH.

In this case Cohen et al. used the method to demonstrate equivalent humidity effects for the

RCTs and the cartridges.

Underhill [130] used the Polanyi concept of adsorption potential to correct the adsorption

potential of a water-immiscible organic vapor for the presence of water vapor in air and

condensed water in micropores. Complete equilibrium and a linear interpolation between dry and

100% RH conditions were assumed. The method gets values of two empirical parameters from

iterative fits of data. When this corrected adsorption potential was put into the DR equation, he

could reproduce the adsorption capacities of trichloroethylene measured by Werner [128]. This

worked even though the Werner experiments likely were not at water equilibrium. Kawar and

Underhill [131] extended this approach to water-miscible organic compounds in water-saturated

air (100 % RH). The inclusion of activity coefficients “often available” adds complexity and
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limits general applicability of the model for predictive purposes.

Yoon and Nelson [17] derived equations for describing asymmetrical organic vapor

breakthrough curves that are often observed at high humidities. They took the organic vapor

saturation capacity to be increasing linearly with time of exposure of an initially dry carbon bed

to humid flowing air:

We = Wb t + Wab (96)

where Wab is the initial capacity. The breakthrough curve equation as a function of time t was:

Co/C = 1 – exp[A – k” ln(Wa + t)] (97)

where the empirical constant Wa < t; A and k” are also fit parameters. Since no physical

meanings can be assigned to these parameters, no correlations with vapor or carbon properties

can be made. This model is correlative, but cannot be use predictively. In a later paper Yoon and

Nelson [132] applied the Reaction Kinetic-type equation they had used earlier for 50% RH

breakthrough curves to those at dry, 24%, 50%, and 80% RH. Curve midpoints (capacities) for

250 – 2000 ppm benzene and methyl chloroform were fit to the Freundlich isotherm equation.

Up to and including 50% RH the two Freundlich parameters for each vapor were consistent; at

80% RH they were both significantly reduced.

Jonas [127] and Hall [133, 134] have reported no significant effects at all of high

humidities (13-95% RH and 0-90% RH, respectively) on capacities and breakthrough times of

dry carbon beds. These observations are due to the high concentrations of organic vapors they

used: 22500 ppm chloroform by Jonas and 14600 ppm carbon tetrachloride, 6300 ppm 1,1,1-

trichloroethane, 7800 ppm trichloroethylene, and 7600 ppm propanol by Hall. At such high

concentrations the adsorption potential of the organic vapor so greatly exceeds that of water, that

adsorbed water vapor is displaced or never adsorbed. These concentrations are much higher than

would be encountered in air-purifying respirator applications.
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C. Predictive Models for High Humidity Capacities

Okazaki et al [135] developed a capacity prediction model that sums up the amounts of

organic vapor in three proposed phases:

We = We(dry surfaces) + We(dissolved) + We(wet surfaces) (98)

They used Freundlich isotherm equations for dry (0% RH) and humid (59 – 90% RH) capacity

correlations. The major disadvantage of this method is that it requires a great deal of

thermodynamic and physical information for input, including: 1) single component vapor/solid

isotherms; 2) single component liquid (aqueous) phase/solid isotherms; 3) vapor/liquid

equilibrium data; and 4) pore volume and surface area distributions of the carbon.

Lodewyckx and Vansant [136] developed a semi empirical model based on extensive

measurements of water adsorption and partial breakthrough curves with seven vapors on four

activated carbons. It assumes that the effect of adsorbed water is to reduce the capacity for

organic vapors (Volume Exclusion Model). However, water vapor can be added or taken off the

adsorbent from flowing air. The organic vapor can also displace water vapor. The reduced

micropore volume is:

Wo‘ = Wo - W(preequilibrated) - W(adsorbed) + W(displaced) (99)

Water adsorbed from air of a different humidity than that of preequilibration is calculated by

integrating an empirical correlation up to the breakthrough time tb:

dt
Az
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where Atot (g/g) is the difference (+ or - ) between two water capacities at different RH

obtained from a water isotherm plot or equation. Temperature T is in oC, linear velocity vL is in

cm/s, bed depth z is in cm, and time is in min. For equilibrium or same humidity applications this
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term is zero. Another empirical relationship was found for calculating the amount of adsorbed

water displaced by an organic vapor:
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where C is concentration in ppm and psat is saturation vapor pressure of the organic vapor. The

reduced micropore volume calculated by Equations (99)-(101) can be put into an isotherm

equation, such as the DR, and used to calculated a reduced capacity in the presence of water

vapor. This reduced capacity and a reduced rate coefficient (see later discussion) can be put into

a breakthrough curve equation, such as the Reaction Kinetic form of the Wheeler, to calculate a

reduced breakthrough time.

The IAST Model of Myers and Prausnitz [92] has been discussed in the section on

organic vapor mixtures. It equates spreading pressures of the mixture components. Since water

and organic vapor isotherms are so different, it may not be possible to use the analytical solution

developed by Lavanchy et al. [39] to avoid integrations from zero pressure. Also, since it was

developed for ideal solutions (miscible components), how well would it do for immiscible or

partly miscible components?

The Polanyi Adsorption Potential Model further developed by Grant and Manes [90] for

mixtures of organic vapors (see previous discussion) has also been applied for immiscible

mixtures containing water vapor [137, 138]. Grant et al. [138] applied a 0.4 multiplier to the

molar volume of water to coalesce its Polanyi plot with organic vapors. Affinity coefficients for

water and organic vapors (see previous tabulations and correlations) may accomplish the same.

A difficulty with this method is that it requires an iterative solution that may not easily or always
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converge [139].

Doong and Yang [139] published a potential theory-based method for water/organic

vapor mixtures. It is a Volume Exclusion Model (fixed total pore volume) with a DR equation

containing an additional hysteresis term (ln h0)
2 attributed to transitional pores. Water, benzene,

acetone, toluene, and methanol adsorption capacity data of Okazaki et al. [135] were fit to this

isotherm equation to obtain single component hysteresis terms and affinity coefficients. For two

different carbons and water vapor the hysteresis terms were zero and the affinity coefficients

were 0.063 and 0.059. They took activity coefficients for the organic vapors and for water at RH

> 60% to be unity. The mixture data of Okazaki et al. covered the range 59 – 90% RH. An

equation was given (but apparently not used) to calculate water activity coefficients below 60%

RH, but this is the region of lesser interest for RH effects. With activity coefficients set to unity

Doong and Yang’s equations for adsorbed volumes of components 1 and 2 become:
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where p2
o is the pressure calculated from the pure component 2 isotherm for volume adsorbed v2;

p1
o is obtained similarly. These equations are nonlinear and coupled; Doong and Yang solved

them by an iterative procedure. Huggahali and Fair [140] decoupled these equations, but this did

not eliminate the need for iteration. These equations “blow up” for some values of pi
o/psati
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approaching unity. This model adds another empirical parameter to the isotherm equations;

however, we noticed that using the affinity coefficients and nonzero values of (ln h0)
2 for organic

vapors listed by Doong and Yang: ln h0 = (1.735 + 0.010) . (104)

D. Predictive Models for High Humidity Rate Coefficients

Lodewyckx et al. [141] also examined the influence of humidity on the overall mass

transfer coefficient. Organic vapor concentrations were kept at 5 g/m3. The Reaction Kinetic

form [Equation (1)] of the Wheeler-Jonas Equation (5), was applied to measured 0.1% and 1%

breakthrough times to calculate capacities We and rate coefficients kv. Unlike capacities, they

found very little influence of the nature of the organic vapor on the decrease of kv with

increasing relative humidity. The ratio of the amount of water present in the carbon pore system

Atot to the total pore volume, TPV, was the important parameter in determining the corrected

adsorption rate coefficent, kv’ :

kv’ = kv (1 – Atot / TPV) (105)

The TPV is the sum of the micropore, mesopore, and smaller macropore volumes; it can be

determined by the total volume of liquid nitrogen adsorption. The Atot is the sum of preadsorbed

water (determined from the isotherm) plus water adsorbed from (or minus that desorbed into) the

flowing air stream (determined by Equation (100) above). The effects of both carbon pre-

humidification and air humidity are taken into account by this model. While the model did not

predict measured rate coefficients exactly, it did account for observed trends. Uncertainties in

experimental breakthrough times are amplified in calculations of experimental rate coefficients.

These humidity and preadsorbed water effects on rate coefficients can be applied as

corrections to rate coefficients measured or calculated at dry (up to 50 % RH) conditions. The

corrected values would then be used in a breakthrough equation, such as Equation (1). A

requirement (disadvantage) of the Lodewyckx model is the need to have an adsorption isotherm
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for water on the carbon of interest. This isotherm can, itself, be changing with time [142].

The only other quantitative model found for humidity effects on adsorption rate

coefficients was from the work of Hall et al. [133, 134]. Rate coefficients calculated from partial

breakthrough curves (0.5 to 4 breakthrough %) and the Wheeler Equation (5) were plotted

against RH. Test humidities were kept the same as preequilibration humidities. The conclusions

were 1) no effect of RH on kv below 50% RH; 2) apparent linear decrease in kv with RH above

50%RH; and 3) different rates of decrease for different compounds. These results can be

expressed as an equation:

kv (min-1) = a – b (%RH-50) for RH > 50% (106)

Parameter values from Hall’s dissertation [134] are listed in Table XV. Propanol, the only water-

soluble compound of the four, had a much lower rate of decrease (b/a) with increasing RH.

Table XV. Empirical Parameters for RH Effects on Adsorption Rate Coefficients [134].

E. Candidate Databases for Model Comparisons

The most cited study of relative humidity effects on organic vapor respirator service lives

is that of Nelson et al. [69]. Seven vapors were studied at 20 – 90% relative humidity (RH), 1000

ppm challenge concentration, and 53.3 L/min flow through either of two commercial cartridges.

Both preconditioning humidity and test air humidity were varied. From their results the authors

prepared a “Breakthrough Time Correction Factor” table, normalized to 50% preconditioning

and use humidity. That table is reproduced here as Table XVI.

Compound Conc
(ppm)

a b b/a

Carbon Tetrachloride 14600 6530 64 0.0098
1,1,1-Trichloroethane 6300 7930 63 0.0079
Trichloroethylene 7800 8090 74 0.0091
Propanol 7600 3700 7 0.0019
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Table XVI. Breakthrough Time Correction Factors of Nelson et al. [69]

At various humidities and 1000 ppm, 53.3 liters/min, and 22 o for a pair of cartridges containing
coconut or petroleum base carbon. The data was normalized to the 50% preconditioning and
test relative humidity. The footnotes indicate the test vapor employed and the carbon type.
The number in parentheses is the standard deviation.

TEST
RELATIVE
HUMIDITY

BREAKTHROUGH TIME MULTIPLIER
PRECONDITIONING RELATIVE HUMIDITY (%)

(%) 0 20 50 65 80 90
0 0.94

(0.08)a,b
0.95

(0.04)a-c
0.99

(0.07)a-c
0.97

(estimated)
0.95

(0.07)a-c
0.95
(-----)a

20 1.02
(0.06)a,b

1.02
(0.03)a,b,d-g

1.03
(0.04)a,b,d-g

1.04
(0.03)d-g

1.01
(0.05)a,b,d-g

1.00
(0.05)a,d-g

50 0.98
(0.07)a-c

0.99
(0.03)a,d,b-g

1.00
(0.05)a-g

0.99
(0.04)d-g

0.95
(0.08)a-g

0.77
(0.20)a,c-g

65 0.97
(0.04)a,b

0.98
(0.04)a,b,d-g

0.99
(0.05)a,b,d-g

0.94
(0.04)d-g

0.84
(0.10)a,b,d-g

0.66
(0.25)a,d-g

80 0.87
(0.06)a-c,e

0.91
(0.05)a,b,d-g

0.88
(0.04)a-g

0.83
(0.09)d-g

0.72
(0.16)a-g

0.50
(0.27)a,c-g

90 0.84
(0.03)a,b,c

0.85
(0.04)a,b,d-g

0.83
(0.06)a,b,d-g

0.78
(0.09)d-g

0.67
(0.13)a,b,d-g

0.48
(0.20)a,d-g

a Isopropanol, coconut base. e Carbon tetrachloride, coconut base.
b Hexane, coconut base. f 1-Chlorobutane, coconut base.
c Benzene, petroleum base. g Ethyl acetate, petroleum base.
d Acetone, petroleum base.

Four conclusions were presented, based on these results:

1. Both the preconditioning and use humidity alter the cartridge service life.

2. The use humidity has a greater effect than the preconditioning humidity.

3. Service life is approximately the same between 0 and 50% humidity.

4. Humidity has a greater effect on cartridge performance at lower concentrations.

While this table does not provide an equation model, in the absence of other options these

factors have been used for applications. Unfortunately, the vapor concentration effect

(conclusion 4) is often ignored.

Another set of relative humidity effect data often cited is the work of Werner [128] with

trichloroethylene on dry carbon test beds. Both concentration (300 – 1300 ppm) and relative

humidity (5 – 85%) were varied. Table XVII lists 10% breakthrough times relative to 50% RH
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we have calculated from this data for 4 vapor concentrations. Reduction of breakthrough time

was greatest at the highest humidity and the lowest vapor concentration. Unlike Nelson et al.

[69], Werner observed relative humidity effects even below 50% RH; however, this can be

attributed to his using very dry carbon, reactivated before use. In actual cartridge applications the

carbon would have some water content (e.g., corresponding to 20% RH equilibration).

Table XVII. Relative Breakthrough Times of Trichloroethylene at Various
Humidities and Vapor Concentrations Calculated from Werner’s [128] Results.

TCE Influent
Conc. (mg/m3)

Relative Humidity
5 25 50 65 85

Relative Breakthrough Times
300 1.72 1.16 1.00 0.55 0.16
600 1.30 1.06 1.00 0.49 0.19
1000 1.25 1.16 1.00 0.60 0.30
1300 1.20 1.05 1.00 0.61 0.33

The set of data selected for testing water vapor effects on adsorption capacities was that

of Okazaki et al. [135] previously mentioned. They give single vapor isotherm (30 oC) data for

four organic compounds and water. Plus they give individual experimental component capacities

and pressures for mixtures of each organic vapor with water vapor. The experimental data covers

useful ranges of relative humidity (59 – 90% RH) and organic vapor pressures (49 - 44447 ppm).

Doong and Yang [139], as already mentioned, fit the isotherm data to an extended DR equation

and listed the appropriate parameter values. The only value they did not give was the carbon

structural constant B. We have calculated from Okazaki’s pure benzene data an average value for

B = 0.0119/R2T2 (= 1/Eo
2). This dataset includes two water-miscible compounds (methanol and

acetone) and two water-immiscible compounds (benzene and toluene).
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F. Comparisons of Selected Humidity Effect Models

Okazaki et al. [135] applied their model to predict the four organic vapor and water

equilibrium capacities they measured experimentally for high humidity adsorption on two

activated carbons. Doong and Yang [139] used the same pure component organic vapor and

water isotherm data fit to an extended DR equation to predict these capacities using: a) their

(Doong-Yang) model, b) the IAST model, and c) the Grant-Manes adsorption potential model.

We have applied the same isotherm data and equations using the Lodewyckx-Vansant and Chou-

Chiou capacity models for mixtures including water.

Model predicted capacities of the organic vapors applying these six models are plotted

against experimental capacities in Figures 80 - 107. For the second carbon (HGI-780) only the

Okazaki and Doong-Yang models were used for acetone and methanol (only). In these figures

and in Table IXX we list average accuracies and precisions of the model predictions. Accuracies

are the zero-intercept trend lines (minimized least squares deviations of calculated values from

experimental ones). The precision (scatter around the trend lines) is calculated as the standard

deviation of the deviations of the experimental values from the calculated ones.

Figure 80. Comparison of Doong-Yang Model calculations for water covapor effects
on benzene capacity with experimental data [135].
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Figure 81. Comparison of Okazaki Model calculations for water covapor effects on
benzene capacity with experimental data [135].

Figure 82. Comparison of Ideal Adsorbed Solution Theory Model calculations for
water covapor effects on benzene capacity with experimental data [135].
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Figure 83. Comparison of Grant-Manes Model calculations for water covapor
effects on benzene capacity with experimental data [135].

Figure 84. Comparison of Lodewyckx Model calculations for water covapor effects
on benzene capacity with experimental data [135].
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Figure 85. Comparison of Chou and Chiou Model calculations for water covapor
effects on benzene capacity with experimental data [135].

Figure 86. Comparison of Doong-Yang Model calculations for water covapor effects
on toluene capacity with experimental data [135].
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Figure 87. Comparison of Okazaki Model calculations for water covapor effects on
toluene capacity with experimental data [135].

Figure 88. Comparison of Ideal Adsorbed Solution Theory Model calculations for
water covapor effects on toluene capacity with experimental data [135].
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Figure 89. Comparison of Grant-Manes Model calculations for water covapor
effects on toluene capacity with experimental data [135].

Figure 90. Comparison of Lodewyckx Model calculations for water covapor effects
on toluene capacity with experimental data [135].
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Figure 91. Comparison of Chou and Chiou Model calculations for water covapor
effects on toluene capacity with experimental data [135].

Figure 92. Comparison of Doong-Yang Model calculations for water covapor effects
on acetone capacity with experimental data [135].
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Figure 93. Comparison of Okazaki Model calculations for water covapor effects on
acetone capacity with experimental data [135].

Figure 94. Comparison of Ideal Adsorbed Solution Theory Model calculations for
water covapor effects on acetone capacity with experimental data [135].
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Figure 95. Comparison of Grant-Manes Model calculations for water covapor
effects on acetone capacity with experimental data [135].

Figure 96. Comparison of Lodewyckx Model calculations for water covapor effects
on acetone capacity with experimental data [135].
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Figure 97. Comparison of Chou and Chiou Model calculations for water covapor
effects on acetone capacity with experimental data [135].

Figure 98. Comparison of Doong-Yang Model calculations for water covapor effects
on methanol capacity with experimental data [135].
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Figure 99. Comparison of Okazaki Model calculations for water covapor effects on
methanol capacity with experimental data [135].

Figure 100. Comparison of Ideal Adsorbed Solution Theory Model calculations for
water covapor effects on methanol capacity with experimental data [135].
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Figure 101. Comparison of Grant-Manes Model calculations for water covapor
effects on methanol capacity with experimental data [135].

Figure 102. Comparison of Lodewyckx Model calculations for water covapor effects
on methanol capacity with experimental data [135].
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Figure 103. Comparison of Chou and Chiou Model calculations for water covapor
effects on methanol capacity with experimental data [135].

Figure 104. Comparison of Doong-Yang Model calculations for water covapor
effects on acetone capacity with experimental data for HGI carbon [135].
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Figure 105. Comparison of Okazaki Model calculations for water covapor effects on
acetone capacity with experimental data for HGI carbon [135].

Figure 106. Comparison of Doong-Yang Model calculations for water covapor
effects on methanol capacity with experimental data for HGI carbon [135].
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Figure 107. Comparison of Okazaki Model calculations for water covapor effects on
methanol capacity with experimental data for HGI carbon [135].
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Table XVIII. Accuracies and Precisions of Models for Adsorption Capacities of Activated
Carbons for Organic Vapor and Water Vapor Mixtures using the Data of Okazaki et al.

[135]
Organic Vapor Carbon Mixture Model Average

Accuracy
(Calc/Exp)

Average
Precision

as Std Dev (g/g)
Benzene Shirasagi S Doong-Yang 0.84 0.031

Shirasagi S Okazaki 1.01 0.027
Shirasagi S IAST 0.51 0.024
Shirasagi S Grant-Manes 1.03 0.021
Shirasagi S Lodewyckx 0.05 0.051
Shirasagi S Chou-Chiou 0.45 0.051

Toluene Shirasagi S Doong-Yang 1.01 0.016
Shirasagi S Okazaki 0.97 0.017
Shirasagi S IAST 0.61 0.047
Shirasagi S Grant-Manes * 1.12 0.007
Shirasagi S Lodewyckx 0.55 0.023
Shirasagi S Chou-Chiou 0.39 0.014

Acetone Shirasagi S Doong-Yang 1.03 0.018
Shirasagi S Okazaki 1.04 0.024
Shirasagi S IAST 1.16 0.022
Shirasagi S Grant-Manes 1.27 0.014
Shirasagi S Lodewyckx 0.32 0.058
Shirasagi S Chou-Chiou 0.80 0.042

Methanol Shirasagi S Doong-Yang 1.18 0.053
Shirasagi S Okazaki 1.09 0.039
Shirasagi S IAST 2.42 0.044
Shirasagi S Grant-Manes 1.32 0.061
Shirasagi S Lodewyckx 1.14 0.079
Shirasagi S Chou-Chiou 1.37 0.036

Acetone HGI-780 Doong-Yang 0.93 0.009
HGI-780 Okazaki 1.02 0.013

Methanol HGI-780 Doong-Yang 1.05 0.021
HGI-780 Okazaki 0.97 0.012

* Two of six iterative calculations did not converge, so this was not counted as “best” precision.
Otherwise, numbers in bold are “bests” for each vapor and carbon.

The Doong-Yang Model, as presented, has the disadvantages of requiring iteration for

solution and of adding another fit parameter to the isotherm equation. However, these

shortcomings have been reduced by subsequent work (see above discussion).

The Grant-Manes adsorption potential model did not match the accuracies of the Okazaki

or Doong-Yang. Also, convergence of its iterative solution is not easy and not always possible
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[139].

The Chou-Chiou model was applied with an extrapolated (to 30 oC) exponent of 1/n = 2

and an arbitrarily chosen k = 1 in Equation (94). Since k and n vary with chemical, vapor

concentration and temperature, it would have been surprising to have good results applying it to

the Okazaki et al. data.

It was surprising that the IAST Model did not produce better predictions, especially for

organic vapors miscible with water. This lack of accuracy may be due to using water molar

volume as the adsorption potential divisor in equating spreading pressures. Using adjusted water

molar volume as Grant et al [138] did or using affinity coefficients (experimental for water)

should produce better results for this model.

The Lodewyckx Model of water exclusion and displacement was also surprisingly

unsuccessful. However, it was developed from breakthrough curve (nonequilibrium) studies and

may not apply to the equilibrium case, even though the equations allow it to.
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V. Summary Conclusions and Recommendations

A. Current Models – Recommendations and Reasons

1. Single Vapors

The Dubinin/Radushkevich Adsorption Isotherm Equation (21) seems to be the most

versatile, proven, and usable model for predicting adsorption capacities of organic vapors on

ordinary commercial activated carbons. For specialized carbons the more general

Dubinin/Astakhov Equation (23) with an additional parameter can be used. These have the

advantages of including: a) carbon property parameters, b) vapor property parameters, and c)

temperature. Only the Kisarov Equation (14) can also claim this, but it has been less proven and

less successful in the analyses of this report. Other isotherm equations, particularly the

Freundlich Equation (9), are useful for correlating experimental capacities and breakthrough

time, but have little value for accurately predicting capacities for unmeasured vapors. The D/R

equation has also been found to be useful for mixture and high humidity models.

Affinity Coefficient correlations using molar polarization, molecular parachor, and

molar volume can all be used. This work has produced improved correlations (Table VIII) that

give more options for this D/R, D/A, Kisarov and Polanyi theory parameter. We prefer to use

molar polarizability, since it also includes inorganic gases and can be obtained several ways,

experimentally and theoretically. The optimum molar polarizability correlation,  = 0.0862 Pe
0.75

is nearly as good as the optimum molecular parachor correlation,  = 0.00827 0.9.

The Lodewyckx and Wood-Stampfer Adsorption Rate Coefficient Models are the

only ones found to predict the trend of experimental rate coefficients with vapor type. They both

include vapor parameters (molar polarizability and affinity coefficients, respectively) and air

flow velocity parameter. The Lodewyckx Equation (57) also includes carbon granule diameter as
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a parameter, but was developed only for 0.1% breakthrough. The Wood Equations (55-56) do

not include granule diameter, but take into account observed breakthrough curve asymmetry

(skew) to allow estimating rate coefficients at a range of breakthrough fractions. Our

recommendation is that the these models be combined by adding skew parameters to the

Lodewyckx equation and fitting the result to more data.

The Reaction Kinetic Equation (1) with a ln[(Co-C)/C] term is to be preferred over the

(unnecessary) ln[Co/C] approximation often made, but justified by restricting it to low

breakthrough fractions. For asymmetric breakthrough curves often observed, a skew term needs

to be included. Equation (7) currently offers the best semi-empirical framework for describing

and, perhaps eventually, predicting breakthrough curve skew. Incorporating skew into

breakthrough curve equations should improve service life predictions, particularly at low

breakthrough fractions.

Of the complete breakthrough models (Table I) currently available and tested the

Wood Model was the most successful (Figure 3), in that it gave reasonably accurate predictions

of measured breakthrough times without large overestimates. The other models had problems

with overestimating breakthrough times (service lives), particularly at low vapor concentrations.

Nevertheless, the Wood Model can be improved by the discoveries and recommendations made

in this report.

2. Mixtures of Vapors

The Grant-Manes (Polanyi Adsorption Theory) Model, Equation (77), showed much

promise for predicting capacities of mixtures of organic vapors on activated carbon (Tables X –

XII), particularly when combined with the D/R equation. It is simple to apply and does not

require isotherm data and integration at low loadings. The IAST/DR Model, Equation (78) is

another alternative. Means of avoiding isotherm integration with the IAST/DR Model have been
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reported, but applied only to mixtures of miscible components.

Volume Exclusion is to be preferred over Molar Proportionality in estimating capacities

for mixture components, since activated carbon is a volumetric sorbent (fixed micropore

volume), not a molar sorbent (fixed number of adsorption sites). Molar proportionality has

seemed to describe data because the mixture components had similar molar volumes. Volume

proportionality and exclusion would better incorporate vapors of differing molar volumes.

The evidence is mixed regarding the effects, if any, of one vapor on the adsorption rate of

another. Until more data show otherwise, we recommend using Single Vapor Adsorption Rate

Coefficients for mixture components. Skew may also need to be incorporated (see above).

For complete breakthrough models of mixtures, rollover is an established

phenomenon. Volume, not molar, displacement should be used to predict rollover

concentrations. Models should concentrate on accurately predicting initial (< 10% of challenge)

breakthrough times, rather than accurately predicting complete breakthrough curves (Figure 77).

The former are of practical interest (service lives), the latter of more theoretical interest.

3. High Humidity Cases

We prefer the Doong-Yang Model, Equations (102-103), over the Okazaki Model,

Equation (98), since the former is simpler to use, is based on D/R single vapor isotherms,

requires less equilibrium data input than the latter, and was nearly as accurate and precise in

predictions (Table XVIII). There is still an iteration difficulty with the Doong-Yang model;

however, we have found a correlation for its hysteresis term [Equation (104)].

However, the limitations of equilibrium models must be recognized. Water vapor does

not adsorb as rapidly as organic vapors on activated carbons. Therefore, equilibrium may not be

reached during the service life of the cartridge or other bed. Lodewyckx and Vansant [136]

have reported Equations (99-101), which allow calculation of the extent of water capacity
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reached as a function of exposure time. It requires knowing the water adsorption isotherm.

The Lodewyckx Model, Equation (105) gives effects of water loading on the rate

coefficient of organic vapor adsorption. Total carbon pore volume and fraction filled with water

need to be known. The Hall empirical Equation (106) can correlate data for water equilibrium,

but this is not usually the case for using fresh cartridges.

In the absence of sufficient quantitative data on the effects of water on organic vapor

breakthrough curve shapes, we recommend using single vapor Reaction Kinetic equations with

skew incorporated (see above for single vapors).

B. Identified Model Gaps

1. A single-vapor adsorption rate coefficient model that incorporates all the

important parameters, including flow velocity, granule size, vapor properties, and breakthrough

fraction (skew) does not exist.

2. Quantification of breakthrough curve skew and identification of

parameters affecting it are lacking.

3. More evidence regarding the effect of one vapor (including water vapor)

on the adsorption rate of another in a mixture is needed.

4. Although the component models exist for an overall breakthrough model

for mixtures of organic vapors in air, they have not been put together to form a complete

predictive service live model.

5. Although the component models exist for an overall breakthrough model

for organic vapors in high humidity air, they have not been put together to form a complete

predictive service life model. The large body of existing data has not been completely and

systematically analyzed.
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C. Future Work for Improved Predictive Models

1. Mixtures Model

Develop multicomponent breakthrough curve equations based on:

a) D/R single component vapor isotherms

b) Known affinity coefficient correlations

c) Known carbon structural constant correlations

d) Grant-Manes mixture equations

e) Volume exclusion

f) Single vapor adsorption rate coefficients

If this combination proves to be inadequate, try:

a) IAST/DR as an alternative to Grant-Manes

b) Find a better correlation of the carbon structural constant

c) Try to take into account covapor effects on adsorption rates

d) Apply mixing volume corrections.

2. Humidity Model

Develop breakthrough curve equations incorporating water vapor effects based on:

a) Single vapor D/R isotherms, affinity coefficients, and carbon constants

b) Doong-Yang volume exclusion and mixing model

c) Lodewyckx water loading rate equations

d) Single vapor adsorption rate coefficients

e) Lodewyckx’s reduction of rate coefficients equation
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If this combination proves to be inadequate, try:

a) Grant-Manes Model or some kind of simplified Okazaki Model

b) Add empirical skew factors due to water loading

3. Combine Mixtures and High Humidity Models

4. Develop Computer Simulations of the Breakthrough Process



143

References

1. G. O. Nelson and A. N. Correia, “Respirator Cartridge Efficiency Studies: VIII.

Summary and Conclusions,” Amer. Ind. Hyg. Assoc. J. 37, 514-525 (1976).

2. D. M. Smoot, “Development of Improved Respirator Cartridge and Canister Test

Methods,” U.S. Department of Health, Education, and Welfare, Contract NAS 10-8842

(1977).

3. E. S. Moyer, “Review of Influential Factors Affecting the Performance of Organic Vapor

Air-Purifying Respirator Cartridges,” Am. Ind. Hyg. Assoc. J. 44, 46-51 (1983).

4. M. D. Werner and N. L. Winters, “A Review of Models Developed To Predict Gaseous

Phase Activated Carbon Adsorption of Organic Compounds,” CRC Critical Reviews in

Environmental Control. 16, 327-356 (1988).

5. G. S. Bohart and E. Q. Adams, “Some Aspects of the Behavior of Charcoal With Respect

To Chlorine,” J. Amer. Chem. Soc. 42, 523-544 (1920).

6. C. J. Danby, J. G. Davoud, D. H. Everett, C. N. Hinshelwood, and R. M. Lodge, “The

Kinetics of Adsorption of Gases from Air Stream by Granular Reagents,” J. Chem. Soc.

1946, 918-934.

7. Y. H. Yoon and J. H. Nelson, “Application of Gas Adsorption Kinetics I. A Theoretical

Model for Respirator Cartridge Service Life,” Am. Ind. Hyg. Assoc. J. 45, 509-516

(1984).

8. T. Vermeulen, M. D. LeVan, N. K. Hiester, and G. Klein, “Adsorption and Ion

Exchange,” in Perry's Chemical Engineers Handbook, 6th Edition, R. H. Perry, et al., eds,

Section 16, 1-48, McGraw-Hill, New York (1984)..

9. W. Mecklenburg, “Uber Schichtenfiltration, Ein Beitrag zur Theorie der Gasmaske,” Z.



144

Electrochem. 31, 488-495 (1925) and Part II, Kolloid. Zh. 52, 88-103 (1930).

10. M. Klotz, “The Adsorption Wave,” Chem. Rev. 39, 241-268 (1946).

11. B. W. Gamson, G. Thodos, and O. A. Hougen, “Heat, Mass and Momentum Transfer In

the Flow of Gases Through Granular Solids,” Trans. Am. Inst. Chem. Engrs. 39,1-35

(1943).

12. Wheeler and A. J. Robell, “Performance of Fixed-Bed Catalytic Reactors with Poison in

the Feed,” J. Catalysis. 13, 299-305 (1969).

13. L. A. Jonas and J. k Rehrmann, “The Kinetics of Adsorption of Organo-Phosphorus

Vapors From Air Mixtures by Activated Carbons,” Carbon. 10, 657-663 (1972).

14. G. O. Wood and E. S. Moyer, “A Review of the Wheeler Equation and Comparison of Its

Applications to Organic Vapor Respirator Cartridge Breakthrough Data,” Am. Ind. Hyg.

Assoc. J. 50, 400-407 (1989).

15. Grubner and W. A. Burgess, “Calculation of Adsorption Breakthrough Curves in Air

Cleaning and Sampling Devices,” Environ. Sci. Tech. 15, 1346-1351 (1981).

16. G. O. Wood, “Organic Vapor Respirator Cartridge Breakthrough Curve Analysis,” J. Int.

Soc. Resp. Prot. 10(4), 5-17 (1993).

17. Y. H. Yoon and J. H. Nelson, “A Theoretical Study of the Effect of Humidity on

Respirator Cartridge Service Life,” Am. Ind. Hyg. Assoc. J. 49, 325-33, (1988).

18. Y. H. Yoon and J. H. Nelson, “Application of Gas Adsorption Kinetics II. A Theoretical

Model for Respirator Cartridge Service Life and Its Practical. Applications,” Am. Ind.

Hyg. Assoc. J. 45, 517-524 (1984).

19. S. Brunauer, L. S. Deming, W. E. Deming, and E. J. Teller, “On a Theory of the van der

Waals Adsorption of Gases,” J. Am. Chem. Soc. 62, 1723-1732 (1940).

20. G. O. Wood and E. S. Moyer, “A Review and Comparison of Adsorption Isotherm



145

Equations Used To Correlate and Predict Organic Vapor Cartridge Capacities,” Am. Ind.

Hyg. Assoc. J. 52, 235-242 (1991).

21. G. O. Nelson and C. A. Harder, “Respirator Cartridge Efficiency Studies: VI. Effect of

Concentration,” Am. Ind. Hyg. Assoc. J. 37, 205-216 (1976).

22. G. O. Nelson, G. J. Carlson, and J. S. Johnson, “Service life of Respirator Cartridges at

Various Concentrations of Common Organic Solvents,” Lawrence Livermore Laboratory.

Report. UCRL-52982. 1980.

23. I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica, and Platinum,”

J. Am. Chem. Soc. 40, 1361-1402 (1918).

24. N. Vahdat, “Theoretical Study of the Performance of Activated Carbon In the Presence of

Binary Vapor Mixtures,” Carbon. 35, 1545-1557 (1997).

25. V. M. Kisarov, “A New Equation for the Adsorption Isotherm,” Russ. J. Phys. Chem.

43(4), 580-581 (1969) translated from Zh. F. Kh. 43, 1037 (1969).

26. L. B. Begun, V. M. Kisarov, A. I. Subbotin, and V. I. Trachenko, “Adsorption of

Aromatic Hydrocarbons and Lower Aliphatic Alcohols on AR-3 Activated Charcoal,”

Sov. Chem. Ind. 5(3), 162-164 (1973).

27. A. C. Rasmuson, “Adsorption Equilibria on Activated Carbon of Mixtures of Solvent

Vapours,” 451-460 in Fundamentals of Adsorption, A. L. Myers and G. Belfort, eds.,

Engineering Foundation, New York (1984).

28. J. J. Hacskaylo and M. D. LeVan, “Correlation of Adsorption Equilibrium Data Using a

Modified Antoine Equation: A New Approach for Pore-Filling Models,” Langmuir. 1,

97-100 (1985).

29. M. Polanyi, “Adsorption from the Point of View of the Third Law of Thermodynamics,”

Verh. Deut. Phys. Ges. 16, 1012-1016 (1914).



146

30. B. P. Bering, M. M. Dubinin, and V. V. Serpinsky, “Theory of Volume Filling for Vapor

Adsorption,” J. Colloid Interface Sci. 21, 378-393 (1966).

31. L. G. Gurvitsch, “Physicochemical Attractive Force,” J. Russ. Phys. Chem. Soc. (Zh.

Russ. Fiz. Khim) 47, 805-827 (1915).

32. M. Polanyi, “Causes of Forces of Adsorption,” Z. Elektrochem. 26, 370-374 (1920). And

“Theories of Adsorption of Gases. General Survey and Some Additional Remarks,”

Trans. Farad. Soc. 28, 316-333 (1932).

33. G. O. Nelson and C. A. Harder, “Respirator Cartridge Efficiency Studies: V. Effect of

Solvent Vapor,” Am. Ind. Hyg. Assoc. J. July, 391-410.

34. G. O. Nelson and G. J. Carlson, "Prediction of Service Life of Organic Vapor Respirator

Cartridges,” Lawrence Livermore Laboratory. Report. UCRL-35005. 1980.

35. M. M. Dubinin, E. D. Zaverina, and L. V. Radushkevich, “Sorption and Structure of

Active Carbons. I. Adsorption of Organic Vapors,” Zh. Fiz. Khim. 21, 1351-1362 (1947).

36. M. M. Dubinin and V. A. Astakhov, “Development of the Concepts of Volume Filling of

Micropores in the Adsorption of Gases and Vapors by Microporous Adsorbents,” Izv.

Akad. Nauk SSSR, Ser. Khim. 5-11 (1971).

37. F. Stoeckli, “Dubinin’s Theory for the Volume Filling of Micropores: An Historical

Approach,” Adsorption, Sci. Technol. 10, 3-16 (1983)

38. F. Stoeckli, “Recent Developments in Dubinin’s Theory,” Carbon 36, 363-368 (1998).

39. A. Lavanchy, M. Stockli, C. Wirz, and F. Stoeckli, “Binary Adsorption of Vapors in

Active Carbons Described by the Dubinin Equation,” Adsorption, Sci. Technol. 13, 537-

545 (1996).

40. G. O. Wood, “Activated Carbon Adsorption Capacities for Vapors,” Carbon. 30, 593-599

(1992).



147

41. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75th Edition, CRC Press, Inc.,

Boca Raton, FL (1994).

42. R. R. Dreisbach, Physical Properties of Chemical Compounds, Advances in Chemistry

Series #15 (1995), Vol. II, #22 (1959), Vol. III, # 29 (1961), American Chemical Society

Washington, D.C.

43. L. Berenyi, “Examination of the Polanyi Theory of Adsorption,” Z. Physik. Chem. 94,

628-662 (1920).

44. M. Dubinin and E. Sawerina, “Charakter der Porositats- und Sorptionseigenschaften

Aktiver Kohle,” Acta Physicochemica URSS. 4, 647-674 (1936).

45. M. M. Dubinin and D. P. Timofeyev, “Adsorption of Vapors on Active Carbons in

Relation to the Properties of the Adsorbate,” Dokl. Akad. Nauk SSSR. 54, 701-704

(1946).

46. B.A. Vaskovsky, cited in M. M. Dubinin and E. D. Zaverina. Adsorption of Gases by

Activated Carbons. Dokl. Akad. Nauk SSSR. 72, 319 (1950).

47. O. R. Quayle, “The Parachors of Organic Compounds,” Chem. Rev. 53, 439-589, esp.

Table 25 on p 484 (1953).

48. P. J. Reucroft, W. H. Simpson, and L. A. Jonas, “Sorption Properties of Activated

Carbon,” J. Phys. Chem. 75, 3526-3531 (1971).

49. A. Golovoy and J. Braslaw, “Adsorption of Automobile Paint Solvents on Activated

Carbon: I. Equilibrium Adsorption of Single Vapors,” J. A. P. C. A. 31, 861-865 (1981).

50. K. E. Noll, D. Wang, and T. Shen, “Comparison of Three Methods to Predict Adsorption

Isotherms for Organic Vapors from Similar Polarity and Nonsimilar Polarity Reference

Vapors,” Carbon. 27, 239-245 (1989).

51. A. E. Duisterwinkel, “Activated Carbon Adsorption Capacities for Vapors, an Alternative



148

Approach,” Carbon. 31, 1354-1357 (1993).

52. D. K. Friday, D. T. Croft, and L. C. Buettner, “Multi-Component Filter Breakthrough

Experiments and Modeling,” in Proceedings of the 1997 ERDEC Scientific Conference

on Chemical and Biological Defense Research, Report ERDEC-SP-063, Edgewood

Research, Development & Engineering Center, Aberdeen Proving Ground, MD (1998).

53. Y. C. Xiang, J. C. Zeng, and S. Q. Yan, “A Simplified Equation for Predicting

Breakthrough Time of a Fixed Carbon Bed,” Carbon. 36, 1057-1060 (1998).

54. N. Wakao and T. Funazkri, “Effect of Fluid Dispersion Coefficients on Particle-To-Fluid

Mass Transfer Coefficients in Packed Beds,” Chem. Eng. Sci. 33, 1375-1384 (1978).

55. A. Wheeler, “Reaction Rates and Selectivity in Catalyst Pores,” in Catalysis, P. Emmett,

ed., Vol 2, Chapter 2, 105-165, Reinhold, New York (1955).

56. O. A. Hougen and K. M. Watson, “Mass and Heat Transfer in Catalytic Beds,” Chapter

20 in Chemical Process Principles, Part 3, Kinetics and Catalysis, 973-1008, New York,

John Wiley & Sons, Inc., (1947).

57. L. A. Jonas and J. A. Rehrmann, “Predictive Equations In Gas Adsorption Kinetics,”

Carbon. 11, 59-64 (1973).

58. L. A. Jonas and J. A. Rehrmann, “The Rate of Gas Adsorption by Activated Carbon,”

Carbon. 12, 95-101 (1974).

59. J. A. Rehrmann and L. A. Jonas, “Dependence of Gas Adsorption Rates on Carbon

Granule Size and Linear Flow Velocity,” Carbon. 16, 47-51 (1978).

60. L. A. Jonas, Y. B. Tewari, and E. B. Sansone, “Prediction of Adsorption Rate Constants

of Activated Carbon for Various Vapors,” Carbon. 17, 345-349 (1979).

61. E. B. Sansone and L. A. Jonas, “Prediction of Activated Carbon Performance for



149

Carcinogenic Vapors,” Am. Ind. Hyg. Assoc. J. 42, 688-691 (1981).

62. G. O. Wood and J. F. Stampfer, “Adsorption Rate Coefficients for Gas and Vapors on

Activated Carbons,” Carbon. 31, 195-200 (1993).

63. O. Grubner and D. W. Underhill, “Calculation of Adsorption Bed Capacity by the Theory

of Statistical Moments,” Sep. Sci. 5, 555-582 (1970).

64. P. Lodewyckx and E. F. Vansant, “Estimating the Overall Mass Transfer Coefficient kv

of the Wheeler-Jonas Equation: A New and Simple Model,” submitted for publication in

the Am. Ind. Hyg. Assoc. J. (1999).

65. V. R- Deitz, C. H. Blachly, and L. A. Jonas, “Dependence of Gas Penetration of Charcoal

Beds on Residence Time and Linear Velocity,” Nucl. Tech. 37, 59-64 (1978).

66. L. A. Jonas and W. J. Svirbely, “The Kinetics of Adsorption of Carbon Tetrachloride and

Chloroform from Air Mixtures by Activated Carbon,” J Catalysis. 24, 446-459 (1972).

67. L. A. Jonas, J. C. Boardway, and E. L. Meseke, “Prediction of Adsorption Behavior of

Activated Carbons,” J Colloid Interface Sci. 50, 538-544 (1975).

68. G. O. Nelson and G. J. Carlson, “Prediction of Service Life of Organic Vapor Respirator

Cartridges,” Lawrence Livermore Laboratory. Report. UCRL-35005. (1980).

69. G. O. Nelson, A. N. Correia, and C. A. Harder, “Respirator Cartridge Efficiency Studies:

VII. Effect of Relative Humidity and Temperature,” Am. Ind. Hyg. Assoc. J. 37, 280-288.

(1976).

70. D. M Smoot, “Organic Vapor Respirator Service Life Prediction,” National Institute for

Occupational Safety and Health. Report PB82-189739 (1981).

71. G. O. Wood, “Estimating Service Lives of Organic Vapor Cartridges,” Am. Ind. Hyg.

Assoc. J. 55, 11-15 (1994).

72. Y. H. Yoon and J. H. Nelson, “Breakthrough Time and Adsorption Capacity of



150

Respirator Cartridges,” Am. Ind. Hyg. Assoc. J. 53, 303-316 (1992).

73. E. Balieu and E. Bjarnov, “Activated Carbon Filters in Air Cleaning Processes-II.

Prediction of Breakthrough Times and Capacities from Laboratory Studies of Model

Filters,” Ann. Occup. Hyg. 34, 1-11 (1990).

74. M. W. Ackley, “Residence Time Model for Respirator Sorbent Beds,” Am. Ind., Hyg.

Assoc. J. 46, 679-689 (1985).

75. H. J. Cohen and R. P. Garrison, “Development of a Field Method for Evaluating the

Service Life of Organic Vapor Cartridges: Results of Laboratory Testing Using Carbon

Tetrachloride,” Am. Ind. Hyg. Assoc. J. 50, 486-495 (1989).

76. Mine Safety Appliances Company, “MSA Respirator Test Data Index,” published at the

Internet site http://www.msanet.com/safetyproducts/resptest/dataindex.stm (1998).

77. S. J. Smith, “Replacement of Carbon Tetrachloride as an Organic Vapour Respirator

Filter Test Agent,” J. Int. Soc. Resp. Prot. 14(2), 6-24 (1996).

78. S. Tanaka, S. Kido, Y. Seki, S. Imamiya, “Service Lives of Respirator Cartridges for 46

Organic Solvent Vapors,” Jpn. J. Ind. Health 35, 290-291 (1993).

79. R. W. Freedman, B. I. Ferber, and A. M. Hartstein, “Service Lives of Respirator

Cartridges versus Serveral Classes of Organic Vapors,” Am. Ind. Hyg. Assoc. J. 34(2),

55-60 (1973).

80. A. J. Robell, C. R. Arnold, A. Wheeler, G. J. Kersels, and R. P. Merrill, “Trace

Contaminant Adsorption and Sorbent Regeneration,” Report NASA CR-1582, National

Aeronautics and Space Administration (1970).

81. G. O. Wood, “Affinity Coefficients of the Polany/Dubinin Adsorption Isotherm

Equations: A Review with Compilations and Correlations,” Report LA-UR-00-59, Los

Alamos National Laboratory, submitted for publication in Carbon (2000).



151

82. L. A. Jonas, E. B. Sansone, and T. S. Farris, “Prediction of Activated Carbon

Performance for Binary Vapor Mixtures,” Am. Ind. Hyg. Assoc. J. 44, 716-719 (1983).

83. C. A. Robbins and P. N. Breysse, “The Effect of Vapor Polarity and Boiling Point on

Breakthrough for Binary Mixtures on Respirator Carbon,” Am. Ind. Hyg. Assoc. J. 57,

717-723 (1996).

84. P. J. Reucroft, H. K. Patel, W. C. Russell, and W. M. Kim, “Modeling of Equilibrium

Gas Adsorption for Multicomponent Vapor Mixtures Part II,” Chemical Research,

Development & Engineering Center. CRDEC-CR-87015. 1986.

85. H. J. Cohen, D. E. Briggs, and R. P. Garrison, “Development of a Field Method for

Evaluating the Service Lives of Organic Vapor Cartridges-Part III: Results of Laboratory

Testing Using Binary Organic Vapor Mixtures,” Am. Ind. Hyg. Assoc. J. 52, 34-43

(1991).

86. L. A. Jonas and E. B. Sansone, “Prediction of Activated Carbon Performance for

Sequential Adsorbates,” Am. Ind. Hyg. Assoc. J. 47, 509-511 (1986).

87. S. J. Doong and R. T. Yang, “A simple Potential-Theory Model for Predicting Mixed-

Gas Adsorption,” Ind. Eng. Chem. Res. 27, 630-635 (1988).

88. A. Lavanchy and F. Stoeckli, “Dynamic Adsorption, in Active Carbon Beds, of Vapour

Mixtures Corresponding to Miscible and Immiscible Liquids,” Carbon. 37, 315-321

(1999).

89. W. K. Lewis, E. R. Gilliland, B. Chertow, and W. P. Cadogan, “Adsorption Equilibria

Hydrocarbon Gas Mixtures,” Ind. Eng. Chem. 42, 1319-1326 (1950).

90. R. J. Grant and M. Manes, “Adsorption of Binary Hydrocarbon Gas Mixtures on

Activated Carbon,” I & EC Fundamentals. 5, 490-498 (1966).

91. M. Greenbank and M. Manes, “Application of the Polanyl Adsorption Potential Theory



152

to Adsorption from Solution on Activated Carbon. 11. Adsorption of Organic Liquid

Mixtures from Water Solution,” J. Phys. Chem. 85, 3050-3059 (1981).

92. A. L. Myers and J. M. Prausnitz, “Thermodynamics of Mixed-Gas Adsorption,” A. I. Ch.

E. J. 11, 121-127 (1965).

93. A. J. Kidnay and A. L. Myers, “A Simplified Method for the Prediction of

Multicomponent Adsorption Equilibria from Single Gas Isotherms,” A. I. Ch. E. J. 12,

981-986 (1966).

94. F.A. Digiano, G. Baldauf, B. Frick, and H. Sontheimer, “A Simple Competetitive

Equilibrium Adsorption Model,” Chem. Eng. Sci. 33, 1667-1673 (1978).

95. B. K. Kaul, “Correlation and Prediction of Adsorption Isotherm Data for Pure and Mixed

Gases,” Ind. Eng. Chem. Process Des. Dev. 23, 711-716 (1984).

96. D. P. Valenzuela and A. L. Myers, Adsorption Equilibrium Data Handbook. Prentice

Hall, Englewood Cliffs, 1989.

97. T. L. Hill, P. H. Emmett, and L. G. Joyner, “Calculation of Thermodynamic Functions of

Adsorbed Molecules from Adsorption Isotherm Measurements: Nitrogen on Graphon,”

98. N. Sundaram and R. T. Yang, “Incorporating Henry’s Law in the Dubinin Isotherm,”

99. J. J. Mahle, “A Henry’s Law Limit for the DR and DA Equations,” Carbon 35, 432-435

(1997).

100. F. Stoeckli, D. Wintgens, A. Lavanchy, and M. Stockli, “Binary Adsorption of Vapours

in Active Carbons Described by the Combined Theories of Myers-Prausnitz and Dubinin

(II),” Adsorption, Science & Technology. 15, 677-683 (1997).

101. S. Suwanayuen and R. P. Danner, “A Gas Adsorption Isotherm Equation Based on

Vacancy Solution Theory,” A. I. Ch. E. J. 26, 68-76 (1980).

102. S. Suwanayuen and R. P. Danner, “Vacancy Solution Theory of Adsorption From Gas



153

Mixtures,” A. I. Ch. E. J. 26, 76-83 (1980).

103. E. Costa, J. L. Sotelo, G. Calleja, and C. Marron, “Adsorption of Binary and Ternary

Hydrocarbon Gas Mixtures on Activated Carbon: Experimental Determination and

Theoretical Prediction of the Ternary Equilibrium Data,” A. I. Ch. E. J. 27, 5-12 (1981).

104. V. Gusev, J. A. O’Brien, C. R. C. Jensen, and N. A. Seaton, “Theory for Multicomponent

Adsorption Equilibrium: Multispace Adsorption Model,” A. I. Ch. E. J. 42, 2773-2783

(1996).

105. E. Gluckauf, “Contributions to the Theory of Chromatography,” Proc. Roy. Soc., Ser. A

186, 35-57 (1946).

106. D. O. Cooney and F. P. Strusi, “Analytical Description of Fixed-Bed Sorption of Two

Langmuir Solutes Under Nonequilibrium Conditions,” Ind. Eng. Chem. Fundam. 11,

123-126 (1972).

107. W. J. Thomas and J. L. Lombardi, “Binary Adsorption of Benzene-Toluene Mixtures,”

Trans. Instn Chem. Engrs. 49, 240-250 (1971).

108. W. Fritz and E. U. Schluender, “Simultaneous Adsorption Equilibria of Organic Solutes

in Dilute Aqueous Solutions on Activated Carbon,” Chem. Eng. Sci. 29, 1279-1282

(1974).

109. D. Basmadjian and P. Coroyannakis, “Equilibrium Theory Revisited. Isothermal Fixed-

Bed Sorption of Binary Systems-I. Solutes Obeying the Binary Langmuir Isotherm,”

Chem. Eng. Sci. 42, 1723-1735 (1987).

110. D. Basmadjian and P. Coroyannakis, “Equilibrium Theory Revisited. Isothermal Fixed-

Bed Sorption of Binary Systems-II. Non-Langmuir Solutes with Type I Parent Isotherms:

Azeotropic Systems,” Chem. Eng. Sci. 42, 1737-1752 (1987).

111. C. Sheindorf, M. Rebhun, and M. Sheintuch, “A Freundlich-Type Multicomponent



154

Isotherm,” J. Colloid Interface Sci. 79, 136-142 (1981).

112. J. Rudling, “Multicomponent Adsorption Isotherms for Determinate of Recoveries in

Liquid Desorption of Mixtures of Polar Solvents Adsorbed on Activated Carbon,” Am.

Ind. Hyg. Assoc. J. 49, 95-100 (1988).

113. P. T. John, “A Method to Determine the Total and Partial Adsorptions from a Binary

Mixture When Component Gases Have Similar Adsorbabilities,” Carbon. 22, 559-562

(1984).

114. B. P. Bering, V. V. Serpinsky, and S.I. Surinova, “Adsorption of a Gas Mixture.

Communication 7. Joint Adsorption of a Binary Mixture of Vapors on Activated

Charcoal,” a translation from Izv. Akad. Nauk. SSSR, Ser. Khim. 5, 769-776 (1965).

115. D. Valenzuela and A.L. Myers, “Gas Adsorption Equilibria,” Sep. and Purif. Methods

13(2), 153-183 (1984).

116. Y. H. Yoon, J. H. Nelson, J. Lara, C. Kamel, and D. Fregeau, “A Theoretical

Interpretation of the Service Life of Respirator Cartridges for the Binary Acetone/m-

Xylene System,” Am. Ind. Hyg. Assoc. J. 52, 65-74 (1991).

117. Y.H. Yoon, J.H. Nelson, J. Lara, C. Kamel, and D. Fregeau, “A Theoretical Model for

Respirator Cartridge Service Life for Binary Systems: Application to Acetone/Styrene

Mixtures,” Am. Ind. Hyg. Assoc. J. 53(8), 493-502 (1992)

118. J. Lara, Y.H. Yoon, and J.H. Nelson, “The Service Life of Respirator Cartridges with

Binary Mixtures of Organic Vapors,” J. Int. Soc. Resp. Prot. Spring 1995, 7-26 (1995).

119. Y. H. Yoon, J. H. Nelson, and J. Lara, “Respirator Cartridge Service-Life: Exposure to

Mixtures,” Am. Ind. Hyg. Assoc. J. 57, 809-819 (1996).

120. I. Zwiebel, F. R. Myers, and D. A. Neusch, “Multicomponent Mass Transfer In Fixed-

Bed Carbon Adsorption Columns,” Carbon. 25, 85-95 (1987).



155

121. R. M. Marutovsky and M. Bulow, “Sorption Kinetics of Multi-Component Gaseous and

Liquid Mixtures on Porous Sorbents,” Gas Separation & Purification. 1, 66-76 (1987).

122. U.S. Department of Labor, Occupational Safety and Health Administration, OSHA

Instruction, Directive Number CPL 2-0.120, “Inspection Procedures for the Respiratory

Protection Standard,” Effective Date September 25, 1998.

123. U.S. Department of Labor, Occupational Safety and Health Administration,

“Factors that can Reduce Cartridge Service Life,” available at internet web site:

http://www.osha-slc.gov/STLC/respiratory_advisor/factors/factors.html (1999).

124. M-S. Chou and J-H Chiou, “Modeling Effects of Moisture on Adsorption Capacity of

Activated Carbon for VOCs,” J. Env. Eng. 123(5), 437-443 (1997).

125. G.O. Wood, “A Model for Adsorption Capacities of Charcoal Beds I. Relative Humidity

Effects,” Am. Ind. Hyg. Assoc. J. 48(7), 622-625 (1987).

126. G.O. Wood, “A Model for Adsorption Capacities of Charcoal Beds II. Challenge

Concentration Effects,” Am. Ind. Hyg. Assoc. J. 48(8), 703-709 (1987).

127. L.A. Jonas, E.B. Sansone, and T.S. Farris, “The Effect of Moisture on the Adsorption of

Chloroform by Activated Carbon,” Am. Ind. Hyg. Assoc. J. 46(1), 20-23 (1985).

128. M.D. Werner, “The Effects of Relative Humidity on the Vapor Phase Adsorption of

Trichloroethylene by Activated Carbon,” Am. Ind. Hyg. Assoc. J. 46(10), 585-590 (1985).

129. H.J. Cohen, E.T. Zellers, and R.P. Garrison, “Development of a Field Method for

Evaluating the Service Lives of Organic Vapor Cartridges: Results of Laboratory Testing

Using Carbon Tetrachloride. Part II: Humidity Effects,” Am. Ind. Hyg. Assoc. J. 51(11),

575-580 (1990).

130. D.W. Underhill, “Calculation of the Performance of Activated Carbon at High Relative

Humidities,” Am. Ind. Hyg. Assoc. J. 48(11), 909-913 (1987).



156

131. K.H. Kawar and D.W. Underhill, “Effect of Relative Humidity on the Adsorption of

Selected Water-Miscible Organic Vapors by Activated Carbon,” Am. Ind. Hyg. Assoc. J.

60, 730-736 (1999).

132. Y.H. Yoon and J.H. Nelson, “Effects of Humidity and Contaminant Concentration on

Respirator Cartridge Breakthrough,” Am. Ind. Hyg. Assoc. J. 51(4), 202-209 (1990).

133. T. Hall, P. Breysse, M. Corn, and L.A. Jonas, “Effects of Adsorbed Water Vapor on the

Adsorption Rate Constant and Kinetic Adsorption Capacity of the Wheeler Kinetic

Model,” Am. Ind. Hyg. Assoc. J. 49(9), 461-465 (1988).

134. T.A. Hall, Effects of Adsorbed Water Vapor on the Wheeler Kinetic Rate Constant and

Kinetic Adsorption Capacity for Activated Carbon Adsorbents, Ph.D. Dissertation, John

Hopkins University, Baltimore, MD (1992).

135. M. Okazaki, H. Tamon, and R. Toei, “Prediction of Binary Adsorption Equilibria of

Solvent and Water Vapor on Activated Carbon,” J. Chem. Eng. Japan 11, 209-215

(1978).

136. P. Lodewyckx and E.F. Vansant, “Influence of Humidity on Adsorption Capacity from

the Wheeler-Jonas Model for Prediction of Breakthrough Times of Water Immiscible

Organic Vapors on Activated Carbon Beds,” Am. Ind. Hyg. Assoc. J. 60, 612-617 (1999).

137. M. Manes, “Estimation of the Effects of Humidity on the Adsorption onto Activated

Carbon of the Vapors of Water-Immiscible Organic Liquids,” published in Fundamentals

of Adsorption, A.L. Myers and G. Belfort, eds., Engineering Foundation, New York, 335

– 344 (1983).

138. R.J. Grant, R.S. Joyce, and J.E. Urbanic, “The Effect of Relative Humidity on the

Adsorption of Water-Immiscible Organic Vapors on Activated Carbon,” published in

Fundamentals of Adsorption, A.L. Myers and G. Belfort, eds., Engineering Foundation,



157

New York, 219-227 (1983).

139. S.J. Doong and R.T. Yang, “Adsorption of Mixtures of Water Vapor and Hydrocarbons

by Activated Carbon Beds: Thermodynamic Model for Adsorption Equilibrium and

Adsorber Dynamics,” AICHE Symposium Series 83(259), 87-97 (1987).

140. M. Huggahalli and J.R. Fair, “Prediction of Equilibrium Adsorption of Water onto

Activated Carbon,” Ind. Eng. Chem. Res. 35, 2071-2074 (1996).

141. P. Lodewyckx, The Influence of Water on Adsorption of Organic Vapours by Activated

Carbon, Ph.D. Thesis, University of Antwerpen, Anthwerpen, Belgium (1998). Also

submitted for publication in the Am. Ind. Hyg. Assoc. J. (1999).

142. P. Lodewyckx, E.F. Vansant, P.R. Norman, and L. Pears, “Influence of Adsorption on the

Water Isotherm for Activated Carbon,” in Carbon ’97, Extended Abstracts and Program

of the 23rd Biennial Conference on Carbon, Vol. I, 116-117, Penn State University,

University Park, PA (1997).


